THE EXPERT’S VOICE® IN ORACLE

Beginning Oracle
Application
EXpress 5

Your ticket to easy and robust
web-application development using
Oracle’s powerful toolset for
pOwWer-users, programmers, and
database administrators

Doug Gault

Apress’ (IOUG)

eeeeeeeeeeeeeeeeeeeeeeeeeee

http://www.allitebooks.org

Beginning Oracle
Application Express 5

Doug Gault

(I0UG) Apress:

[vww allitebooks.cond

http://www.allitebooks.org

Beginning Oracle Application Express 5
Copyright © 2015 by Doug Gault

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0467-2
ISBN-13 (electronic): 978-1-4842-0466-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Jonathan Gennick

Technical Reviewer: Warren Capps

Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,
Michelle Lowman, James Markham, Matthew Moodie, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Jill Balzano

Copy Editor: April Rondeau

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, email
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com/. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

[vww allitebooks.cond

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/
www.apress.com/source-code/
http://www.allitebooks.org

To those in search of knowledge and better understanding,
I dedicate this effort. Hopefully, as your skills grow,
you too will continue to share the wealth.

—Doug Gault

vww allitebooks.conl

http://www.allitebooks.org

(IOUG)

independent oracle users group

About I0UG Press

J0UG Press is a joint effort by the Independent Oracle Users Group (the I0UG) and
Apress to deliver some of the highest-quality content possible on Oracle Database and
related topics. The I0UG is the world's leading, independent organization for
professional users of Oracle products. Apress is a leading, independent technical
publisher known for developing high-quality, no-fluff content for serious technology
professionals. The I0UG and Apress have joined forces in I0UG Press to provide the
best content and publishing opportunities to working professionals who use Oracle
proaucts.

Our shared goals include:

« Developing content with excellence

« Helping working professionals to succeed

« Providing authoring and reviewing opportunities

« Networking and raising the profiles of authors and readers

To learn more about Apress, visit our website at www.apress.com. Follow the link for
I0UG Press to see the great content that is now available on a wide range of topics
that matter to those in Oracle's technology sphere.

Visit www.ioug.org to learn more about the Independent Oracle Users Group and its
mission. Consider joining if you haven't already. Review the many benefits at
www.ioug.org/join. Become a member. Get involved with peers. Boost your career.

www.ioug.org[;oin
APIess

Ivww .allitebooks.conl

www.Apress.com
www.ioug.org
www.ioug.org/join
http://www.allitebooks.org

Contents at a Glance

About the Authors........ccmmmmmmme s ———————————— Xix
About the Technical REVIEWETsvcsssssmssssssmsssssmssssssssssssssssssssssssssssssssssssnsassnsass Xxi
Acknowledgments........ccccuiiissnmmmmmnmmmmsssssssssssnnnmmessssssssssssnnnesssssssssnnnnnnnnssssssssnnnnnns XXiii
Chapter 1: An Introduction 10 APEX 5.0.......cccccemmmmmmmmmsmssssssssssssnsssssssssssssssssssssssssnns 1
Chapter 2: A Developer’s QVErViEWccccuussnnssssssssssss 7
Chapter 3: Identifying the Problem and Designing the Solution............cccccisueenne 37
Chapter 4: SQL WOrkShopccuurussmenmmsssssnnmssssssssmmsssssssssssssssssssssssnssssssssnsssssssnnnnss 45
Chapter 5: Applications and Navigationccccccimmrrmmssssssssssnnnsmnmssssssssssssssnsssssnns 67
Chapter 6: Forms and Reports: The BaSiCScccuuuuummmmmmssssssmmmmssssssssssssssssssssnns 107
Chapter 7: Forms and Reports: Advanced........ccccuusemmmmssssssnmssssssssssssssssnssssssnnnns 167
Chapter 8: Programmatic Elementsccccurmmmnnnsmsnmmnmsssnmmmsssssssssssssssssssnn 231

[T L e g YT T] 259
Chapter 10: Application Bundling and Deployment...........ccccumemmmmnssssnnnssssssnnns 287
Chapter 11: Understanding Websheetscccennnemmnnmsssssnnmnssssssnsssssssssssssssnnns 309
Chapter 12: A Websheet Example.........ccccunnmmmmmmnmmmmmmmmmmssssssnnmsssmmssssssssssssmnns 339
Chapter 13: Extended Developer TOOISc.occcummmsssnmnmmsssssnnmssssssnnssssssssnssssssnnnns 359
Chapter 14: Managing WorkSPacCes.....ussssresssssssssssssnssssssssnnsssssssnnsssssssnnnsssssnnnnss 383

v

[vww allitebooks.cond

http://www.allitebooks.org

vi

CONTENTS AT A GLANCE

Chapter 15: Team Development

... 401
Chapter 16: Dynamic ACtiONSccccurussemnmmsssssssmmssssssnssssssssnsssssssnsssssssnnnsssssnnnnns 431
Appendix A: Page Designer Walkthrough and Referenceccccuussesnssssssssnssssns 449

INA@X..ceiiiisnnnnnsssnnnnnssssnnnsmssssnnnssssssnnnsnssssnnnssssssnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnnnss 469

[vww allitebooks.cond

http://www.allitebooks.org

Contents

About the AUROFcccceiiiemmmissnins s s nn e nnnn s Xix
About the Technical REVIEWETccsseesssassssassssssssassssassssnsssasssssssssnssssssssassssnsssansasass XXi
AcknowledgmEeNts.......cceerrssssssnmnsnnnsmmsssssssssssssssssssssssssssnsnnssssssssssssnnnnnnsssssssssnnnnnns XXiii
Chapter 1: An Introduction to APEX 5.0.......c.cccccummnnsmmmnmmmsssssnmmsssssssmssssssssssssssssssnsss 1
WRAL IS APEX? ...ttt n s s n s n e nn s n e nn s nn e nn e nnn s 1

A Brief HiStOry 0f APEXcccoiiirirrrererss e sse e ssessesss s ssssassssssssssssssssssssassassasssssasssnnnns 2

D AT 1T) 1 (0] 2

0T =T ST T=T o 1 (0] 2

APEX 5.0 @nd the FULUIE........cououieircce s 3
What You Need t0 Get Startedcccvvrvervnrenienrersesserses s ss e e e se e e snssesnes 4
ACCESS 10 aN APEX INSTANCE ...t s 5

WED BIOWSELcoeeieeeceresieecse s se st e e E b e ne AR e e R e e nn s 5

SQL DEVEIOPET ..veueeveerrerererseersesessessssesassessesessessssesssssssssessssessssessesssessssesssssssssessesssessssessssessesenssssssnsnsen 5
1111 11 SRS 6
Chapter 2: A Developer’s OVeIrVIEWccceesrussnnssssssnnnssssss 7
The Anatomy 0Of @ WOIKSPACE.........ccecerrerrerierrssisses s ses s e e s e e s e s sn s snssnssnssnsnas 7
APEX USEISecueereeeeueesessesssesesssse e sesss e e e sesse et sesss st sssssss s e s sss st sssse s b ssssess st sessasssssessssssssssssssnsssnsssnns 8
Applications, Pages, Regions, and REMS ...t 9
Workspaces, Applications, and SChEMAS ..o 10

A Final WOrd 0N WOIKSPACESccceerurrrererersrseeressssesesessssessesessans 12

A Tour of the APEX MOTUIEScccouremrereirerssisessesesssse s se s sse s s s sasssssasssaess 12
THE HOME PAQJE ..ot 13
Y0 L0 L0 N 31010 16

vii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

SOL WOIKSNOP «..veereereeerterersesessesassessesessesessesassesassessssessssssssssssessssessesessssssssssssssassessensssessssssssserssnessensnses 19
PACKAGEU APPS ...vevereirreriirieriesiessessessessessessessessessessesaesaesaesaesaesaesaesaesaesaessesaesaesaesaeseeseesaesaesaesessssanssnnsnne 32
Administration and Team DeVEIOPMENL ... 35
1111 1P SRS 36
Chapter 3: Identifying the Problem and Designing the Solution............ccccessueenne 37
Identifying System Requirements ... e 37
NEVEI @ ClEaN SIALE ...t e s 37
A BrOKEN SYSTEM ...ttt st s s s b s e e e e e e e e p e R e nn 38
HOW DO YOU FiX TRINGS? ...ttt 38
System Design with APEX in MiNGccooveerenniennninenensesesessessssesessssessssesesessesssssnsens 40
Table Definition and User-Interface DEfaultSc.cooeerrrrrrnrr s 40
APEX and Primary KEYSccceururrererererrsesessssssesesssans 4
Business LogiC VS. USEr-INErface LOGIC.......ccccvrvrrrererrrrnesesersssesesessssssesessssssssessssssssssssssssssssssssssssssssenes 4
Placement of Database ODJECTS.........cococeerererererererererenese e 42
Translating Theory t0 PractiCe.........cccovrvrinirnc s 42
114 1] 11PN 43
Chapter 4: SQL WOrkShopccuurusseenmmssssssnsmssssssssmssssssssssssssssssssssssssssssssnsssssssnnnnss 45
Creating Objects with the ObjeCt BrOWSETccoeeeeerererece e sns e 45
Loading Data with the Data Workshop ULIlityccceeererersrnnnnnses s 52
Creating @ LOOKUP TADIEcceeerererircree e sns s e s sns s se s sne e s 57
Loading and Running SQL SCHPLScceeerererereresressessessesssssessssssssssssssssnsssssnssnsssssssens 60
User Interface Defaulls.........ccco e 64
Understanding User Interface Defaults..........ccovvveeeerinescsernesesisseseses s sesessssenes 64
Defining Ul Defaults for TADIEScovcceeiiercsrrecs e s 64
E3 1111 1P 66
Chapter 5: Applications and Navigationcccccnnsemmmnmssesnmmmsssssnmmsssssmsmssnn 67
The Create Application WIzard............cccvvvverrersensensensensesssssessessessessesssssesssssessssssssssssssnnns 67
Sample and Packaged APPIICALIONScccevrererierenrererererereres e rse e sessesessesasessesesassessesassessssessssnaes 68
Websheet APPlICALIONS ... s 72

viii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Database Applications from SPreatdSheetS........occvevrierrrererersrerse e rassessesessesesassanaens 72
Applications from SCIatChcccceevcerrrerer e e ra e e e e ae e nnen 73
Static Content REGIONS.........ccceveeeceecerceeceer e e n e e 82
0101 [T o T TSR 87
Navigation Bar ENtries.........cccvevcinnnensnssnses s s s s s s snsssssnsssnnens 88
GIODAI PAQES.....cceeeeeeeeerernerrerse e sse e e ssessessessesse s e s e snesnesnesaesnesn e s nenn e snesnssnannennnnnnnan 91
Breadcrumb REIONS........ccucvverierierieririr st sa s se s s snssne s 93
Breadcrumb ENtries ... 98
S £ 99
LiStS 0f VAIUESceiiriririsciin s 102
STALIC LiSt OF VAIUESeeeeececececeereeee et n s nsnnnas 103
DyNAmiC LiSt OF VAIUES........cccerrreeererrnscsesssrssesessssssse s s sesssss s e s ssssssssssssssssssssssssssssssssasnns 104

E3 1111 1P 7S 106
Chapter 6: Forms and Reports: The BaSiCScccvusssemmmmssssnnnmsssssssnmssssssnsssssssnnnss 107
APEX FOIMS ...ttt s s sas s s st et e sasnene s 107
FOrm on @ TabIE........cccoeriiirir 109
Creating @ FOrm 0N @ TaDI@..........cooeeieeeee e 109
Modifying @ FOrm on @ TaDIE ... e e e 115
Looking Behind the SCENES ...t 120
FOIrM 0N @ PrOCEAUIE.........ceeeeeeereeereeee s se e e e e e enenns 122
Creating @ FOrm 0N @ PrOCEAUIE..........ccovvererereercree s sereres e s sse e sesesse e s e sas e eaesessesesassessesassesasseens 122
Modifying @ FOrmM 0N @ PrOCEAUNEcccoererrriererrsrsssesesssseesesssssesesssssssessssssssssssssssssssssssssssssssssssasnns 125
Looking Behind the SCENEScccceerrireererirsesesrsrssse s ss s s s sssssssssssssssssssssssssssssssssasnes 126
Master—Detail Report and FOrm ... 127
Creating a Master—Detail Report and FOrMcccovevevrerenieresreree e sese e sesessesessesessssessesessessssenes 127
Modifying @ Master-Detail REPOI..........ccoe e sa s 132
SESSION STALE ... ——————————— 137
Understanding SESSION STALEcoeoeeereriiercrrrec s 137
Sharing Database CONNECHONS...........ccoreeererreicririee e 138

ix

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Setting and Retrieving SESSIioN STALecccccvevrierre v 139
VIieWiINg SESSION STALEcccuvcererrerrererererereseresserssersesessere s e rsssessesesassassesassesassesasssssesassesassesassesassnaes 140
Lo o) Q1T 1 141
Page vs. ApPliCation HEMS........coov i e e e e 142
The Importance of Bind VariabIes...........cccvrininnrrcrn s enas 142
BUII-IN BMS .. s 143
APEX URL SYNTAX......censerrenrrersssessessssesssssssesssssssessnssnes 143
Searchable APEX REPOIS.......ccccceeemrereniresnssc e sse s sse e s ssesesessssessesessesssnsnnens 145
Creating a Searchable APEX REPOM.........ccccvrrererrereerererresesesersssessssessesesssssssessssessesessssssssssssesassessenenes 145
Adding Reset Paginalion...........ccccevriiiininnrissirrs s ss s e s e sa s e sa e sa e sassassassnsnnes 147
Looking Behind the SCENES—APEX REPOIccccererrrerereriersnsersesersesessessssessssessesessssssssssssessssessesenns 148
Looking Behind the Scenes—APEX Master—Detail FOrmscccvvevrererserensessssesesesssesesessessssees 150
MOre 0N APEX FOIMS ..o s s s e 152
HEM LAYOUL.......eeeeeee ettt e s s s ne e e nn e e e s 152
Placing Multiple Items in the SAME ROW ..o 154
IMPIEMENTING LOVS......oeeieeere ettt s e e e ns e 156
Master—Detail CIEANUPcovcrircr e e 159
D g o) G 5 -] [SRS 160
Adding @ Help TEXE REGION.........cccceerrrecrerrseesesesssese e s ss s e sessssssssssessssssssessssssssssssssssssssssans 161
SEEUING HEIP TEXL ...ttt a s e r e e enp e nn s e 162
Declarative BLOBS..........ccoriimi s s sasens 163
1111 112 SRS 166
Chapter 7: Forms and Reports: Advanced........ccccusseenmmsssssnsmsssssssssssssssssssssssnnns 167
TabUular FOrMS ... 167
Creating @ TADUIAr FOIM ..ot 167
Modifying @ TADUIAr FOM ..o 172
Looking Behind the SCENES ...t 176
INtEractive REPOIMS.......coeiecece e sa e s sa e a e sn e sn e nn 177
Creating an INteractive REPOI.........coveeeererreienerrirsese e se s sss e sss s e e ssssssnsnnnes 177

Running an INteractive REPOIM ..ot sns s e 181

CONTENTS

Restricting Functionality by BEPOrt ..o sn s sn e s 182
Restricting Functionality by COIUMN..........ccovrerecrecre e ra e sa e e 184
Using the Column Heading MENUccvceverrererererererereresersssersesessesessessssessssessssessssssssssssesassessenenes 184
Searching DY COIUMN........ccoeoeecrer et res e e s sesse e sae e e sae e s s e e sae e sae s e e e sae e sae e naeananns 185
ST L= T o J 00 T 1T 188
1 =1] T OSSR 188
ST 1o PR 191
AUAING BIEAKSc.veeeeeeeiiesirsie s see s ses st e sas e s sas s sas s s ss s s e s e s e e e st e s e e e e e s e b et e b e e e e et e e e e e naesaenennas 191
1T 410 1 o SRS 192
00 . o T T J 00 T T 193
AdAING AQOIEUALESveceeeeeeerirrer et sr e e e se b e e e e e e e e e nrenn 194
Adding Charts t0 Interactive REPOMS........ccvuvereererererererertreresreree e e ses e sas e saesessesassesassesassesassenans 194
6010] 196
PIVOL.....ccccccc i ————————————— 197
USING FIASNDACK ..o s sa e s a e s a e s r e r e e e e e a e n e e e nn e e s 198
Saving an INteractive REPOITccovvererererere st rer s ree e rae e s e e ssesse e saesessesesaesassesas e saesesassasasanaens 198
Resetting an Interactive REPOIT.........cov v sr e sr e sa e sn e sa e nn s 200
6T 00T 8 1= 200
T [0 Ty 1o BT 02 0T O 201
00101 1 11 o SRS 202
Modifying an Interactive REPOIT ..o nn s 204
Looking BENiNA the SCENEScceceverererererererresersesessesessesssessssessesessesessessssessssessssesssssssssassesassesseneres 212
CalBNAAIScvcrrrcerr s ————— 213
Understanding Calendar TYPEScoceceererrnerermrsrese s se s se s se s se s sesassssssnns 214
Creating @ CalBNUArccccereirierer e e e s a e e e e e p e s 214
Looking Behind the SCENES ...t s p s s r e 222
0] T2 T TSR 222
Writing QUETIES TOr CRAMSccceeceerirecrirrsees e a s nnnnns 223
Creating @ CRAM.........ccco e s e s s e s e e pn e e nnes 224

xi

CONTENTS

L1 LT o 0= {0 g X 1 U 226
LooKing BENINA the SCENESccecevererererererrersesersesessesessesesessssessesessssesssssssessssessssesssssssssassesassesssnenes 229
1111 11 SRS 229
Chapter 8: Programmatic Elementsccccuremmmnnnsmmnnmnssssnmnssssssnsmssssssssssssnnn 231
0] o 1 (0 231
REQUITEA VAIUES.......ceceererreereereeree e ssessesssessesssessssssessessaesssssasssssssssssesasssesassnsssansnsesaes 231
Validations........ccoiiicrc e ———————————————— 234
ltem-Level Validation ... 234
Page-Level Validation ... s sa e e sr e sa e sa e sa e s sa e na s s 238
Tabular FOrm Validation ... 240
011 T 20 P 242
(T (10 TSR 242
L7701 PO 243
Creating @ COMPULATIONcoov et 243
PrOCESSES ... cceiueeerereeeese s s s s s s s s e e e e s e e e e e s e s e e e e e e e e e e e e e e nnn e nnnnnnnnnnns 246
EXECULION POINTSececcretcccsesisseees s s srs e ss s s e sn s sss e s ssssesnssssnsnsnnsnnes 247
o (0o T T 0T 247
Processes in the Help DeSK APPICALIONcccccerereenererrneesesesesesesessssssessssssssesessssssssessssssssssssssssnsnns 248
PL/SQL REJIONScoviueerrriecriseeses e ses e ses e s ss s ss s ss s ss s e s sss s s sasssssssssenens 251
DYNAMIC SOLciveereeeirerire s sa s e a s e s a e st p s s na s 253
RS0 2 258
Chapter 9: SeCUNitY.....ccccruussmmmmmssssnnnmmssssnnnmmssssnsnssssssnsnssssssnnnssssssnnnsssssnnnnsssssnnnnns 259
User-Maintenance Navigationccccoverennnenine s ses e sassessenns 259
User-Maintenance Data ENtrycccocoeeeeenenencsese e ssesse s ssssssssssnssnssnsssnnenns 263
AUNENTICALION ... s 269
Custom Authentication SChEMESc.cccccrrerrnennr s 270
Conditional SECUKLYceeeerererirere et 272
ACCESS CONTIOL ...t s ne s sn s s 273
AULNOTIZALION ... 276

xii

CONTENTS

Read-0nly HEMS.......cocvcereririerrere st sn e sn s sn e sn e sn e sn e 279
(D7 1 LT o 1]) OSSR 281
Session-State ProteCtion.........ccccecececrcccsce e 284
1111 1P SRS 285
Chapter 10: Application Bundling and Deployment.........ccccccrvcnnsssssnsssnnnsssssssnes 287
Identifying Application CompPoNeNts.........ccceveverercre e 287
EXTEINAI FIlEScoeeeeceeeeci e s e e e 288
Database ODJECTS.......ccceurueerererireererre e r s ae e s ne e ne e 288
APEX-BASEU FIlSccrvrrrueererrrreesisisseese s sesss s se s s ss s s sa st sssssssessssssssessssssssssnsns 294
APEX ApPlICALiON EXPOITS.....cccoveecrerrrrecsesisseeesesssesesessssseses s ssssssssesessans 296
SUPPOIING ODJECES... e n e a e 299
o (=T 0 L0 (=T 300
SUDSHEULIONS.eeececeeecerieece s r s s s s s s s e s ssssssnsssssnsssesnassnsnsnsnnas 301
50T o I 07 o110 T 301
VAlIAAHONS ..o ne e ne e e e e e s 301
INSTAILL....ece e 301
L0070 To L SRS SR SRS 303
D2 303
{410 SRS 303
LT Vo T SRS 303
4] 0T (4o SRS 304
SUMMEAY ...ttt a s s ae e s e e r e e s e a e e ae e s snnnnnnnnns 308
Chapter 11: Understanding Websheetsccccuvsmmmismmsmsmmsssmsssmsssssssssssssnnsnnns 309
WebSheet STrUCTUTE.......coc vt e 309
LV P2 0 o S 311
0] 01 G131 L LT 311
Structural NaVigation.........cccevevercerrererere e ses e sss e rse e sse e s e sesaesas e saesessesesaesassesassesasnesasesaeanaens 313
HEID e ————————————————————— 313
MAFKUD SYNTAXcoviirriiicrisiseseseses e e se s se s s sne e s enn s nnas 315

xiii

CONTENTS

User AULhentiCation.........ccccccveerceresrserse e 316
User AUthorization...........ocnin - 318
SBCHONS....ccvicrrrcit e ——————————————————— 323
TEXE SECLIONS ... ———— 323
NaVigation SECHONS........covr e s 326
Data SECHONS ..o —————————————— 327
Chart SECHIONScceciriiiirii s 337
ANNOTALIONSeceeeiieeeirerie st e s e a e nns 337
AdMINISIIAtioNcoei i —————————— 338
BT 111 12 SRS 338
Chapter 12: A Websheet Example..........ccciunnnmmmnnnssnnnmmsssssnmmsssssssssssssssssssssnnns 339
£] SRS 339
Creating and Configuring a Websheet Applicationccccucvrenirennssesnsesssesesenenns 340
Adding Content to @ WebSheet ... 345
Creating Data GriUS........cou v 345
APPIYING CONSIIAINTS......ccereererererrerrereresereresesessersesesaesessesassessssessesesassassesassesassessssessessssessssesseessesnaes 347
AAUING PlAYETS......eueeveereerereerereressessesersesessersssessssesssssssessssessssessssessesssssssssessssessssssssssssessssessssesssssssssnaes 348
Creating Alternate Default REPOITS........cocvvevrrererererere s reserssrersesersesessesessesasessssessesessssessesassessenenes 349
Creating Page SECHONSccceveverererere e rer e reereree s sae s ra e ra s sae e sa e e saesasae e s e sae e sae e saenasaesansesaenenes 350
SOL TAGS c.veuerrererrererserersersesersesersessssersssessssessessssessssesassessesessessssessssessssessssersessssensesessssesssessensessssssesansens 357
ACCESS CONMIOIS.....c.cieiucereisei i 358
SUMMAIY ...t e s e s ae e s r e e s e a e e ne e s snnnnnnnnas 358
Chapter 13: Extended Developer ToOISccucccmmmmsssmmnmmssssnsnmsssssssnssssssssnssssssnnnss 359
o 10 0 0T 359
F o 011 T 360
LOCKING @N APEX PAQEcucocrererreeeresseesesesssssessssssssesessssssssessssssssesssssssssssssssssssssssssnssssssssssssssssnsasnns 360
UNIOCKING @ PAJE........coeeereeeecrerisieees et ss e sas e e se s s e s s se s sse s e sssse s e nanssnsnsnees 361
AdMINISIEriNg PAgE LOCKScueuecerirecirireeisisee s sn s 361

xiv

CONTENTS

Application and Page GrOUPSccceerererrereessersessessesssssessnes 362
ADPPIICALION GROUPSeceeeeeceresseesesesseese s s ses s se s s sesss s e e sss e e s ss e e s sse s ne s sse et nessansssnsans 362
PAGE GIOUPS ... e e 364

APEX Views and the APEX DiCtiON@ryccccvrererererrenressssssssssssessssssssssssssssessssssssassanans 364
The APEX SCHEMA......cciuiiririisiissssssisssss s bbb 365
APEX VIBWS ...vvvisisisssssissssss s ss bbb 365
APEX DICHONAIYceveereerereerererasersesersesessesassessssessssesssssssessssessssessessssssassessssesssssssssssssssssessssessensssssnaes 368

SEArChING INAPEX ...t sn s sn s n s sn s n s sn e n s sn s sn e sn s nn s r e sn e snnnn s nn s 368
Lo T 368
Search APPlICALION........ccuiriir i ——————————— 369

Monitoring Your APEX Applicationcccceeevererencse e ses s e ses e e e sns s ssnenns 371
EN@DIiNG LOGGINGcueoeeereeeecrerisieesesese s se s se s sesss s sesssss s s ssssssessnssssssssnssssasnnns 371
USING the ACTIVILY LOGSceeeeerereecereseesesessse s s sssss s s sssssssessssssssssssssssssnens 372
LT I a]] 0TSSR 373

APEX AQVISOXcoveueireerssersensssessssessessssesssesssnssssnssssssensssssssnssnes 373

BUIID OPLIONS ... ss e sr e sne s snesresa e sn e sn e sn e snesn e nennennennennnnans 375
Understanding the NEEd...........covrericrr e r e 375
Creating @ Build OPtioN........cccccoiiccc e s p e e 376
Configuring BUild OPtiONS ..o n e r e e e s sp s s p e s 377
Prompting for Build Option STatuS.........cccoceeriereinenrr e sa e re s 377
Applying Build OPLIONS........coieeirire e se e s s r s s r e e sp e e s p e nenn s 378
Reporting on Build Option UtIliZation..........ccccccoeerennenncnnerscnescse s ses s sseesns 379

Page-Specific ULIITIESccccveeerererrreris e 379

APEX and Oracle SQL DEVEIOPETcccoveereriererneressesessssesesssesessssesesssesessssesessssenens 380
11 =T = LT 380
LT o1 (0] T T TR0] 00 381

BT 111 112 SRS 382

XV

CONTENTS

Chapter 14: Managing WorkSPaces.......cccsrusssssssssssssnsssssssssssssssssnsssssssssnssssssansss 383

Learning About Your ENVIrONMENT ... s s s s sns s s snsnnnns 383
Viewing Instance INformation ... e 384
Checking the APEX VEISION.........c.vveesesismsesismsisssissssssssssssssssssssssss s 385

Managing the SEIVICE ... e se e sn e nne e 385
WOTrKSPACE PrefErENCES.ccoveereecrerirecrer s p s p s nnnrans 386
IMESSAUES ...uvveueneerreseesessssesesesssse st s s s a s s e e s s se e e e s se e e s e s Re e e e s R e Re e s e s R e Re e e s aRe e e e s nRen e nensennnnnes 387

Managing Meta Data..........cccocerererererirese e n s 388
Developer Activity and ClicK COUNE LOGScceverrerereerererererereresrersesersesessssesserssessesessesessssessesassesssnenes 388
SESSION STALE.....cvirricirrr i ———————————— 389
DYoo L0 L0 N 0 T - O 390
Websheet Database ODJECES........ccovrerererererererrere et se s e e rae e sae e ae e saesa s e saesesaenenaes 390
Application BUild STALUSccccerererererrerereres s sere s rsereseresserseserassessesassesassesassesassessssassesassesssesaes 391
LU 122110 391
Interactive REPort SEHINGSccoeeeveerrer st ra e s e e ae e sa e s a e s 392

Managing USErs and GrOUPScccceeererersersesmssessssessesssessssessessssesssssssessssessessssesssssssens 393
Creating ONe USET ... se s se e e e s sr e sn st s s bt a e e n e e ae e nn s n e ns 393
Creating MUIIPIE USEIS ..o se e e n e e e sn s s p e 394
Organizing USErs iNt0 GIOUDScoeeererrrierrniersssessesessessssesssessssessssessssesssssssessssessesessssssssssssessssessaneens 396

Viewing Usage Reports and Dashboardscccceeeererenesesessses s sesses e 399

E3 1111 1P 7 399

Chapter 15: Team Development............ccccininnemmmnnssesnmmmssssnmmssssnmssssnssannm 401

Team DevelopmeEnt OVEIVIEW........ccvveererieererieererssesesssessesssesssssessssssssssssssssssssssnesses 401

Team Development INTErfacecccvcvvrcrsnss s s 403
APEX HOME PAGE......cceeeeieeircrircr et sss e s s n e nesn s a et n e st n s sa e e nennnnas 403
Team Development HOME Page.........cccceerersicnnscre e sss e s e ssssessssessssenes 404
Common DesSign EIBMENTS..........cccoeeieirerrere e s s sn s sn s s ns 405
Drilldown FUNCHONAIILY.......ccoeeerecieccecireris s n e r e s sn s r e 406
BLE- T o 1T SRS 408

xvi

CONTENTS

MIIBSTONES ... r s ne s n e s nn e 409
MileStoNes REPOIE TADccceerereecerrreccsiris e s e na e e 409
BY OWNEE TaD......cvecccetccciri et ae e s s e e ne e e e 410
Features by MileStone Tab ..o e e sa s e 410
FEATUIES ...ttt ——————— 411
Features Report Tab.......c.co o e e 411
2 1T (0 - o 413
Progress LOg TaD ... 413
TO-DO EBMS ...ttt —— 414
51 415
FEEDACK.......oc et —————————— 416
CoNfiguriNg FEEADACK.........cceeererrereerererereresersesersesereesessesassessssessesessesessesassesassessssesssssasassesassesseneres 416
Polishing the FEEADACK PAQEcccceeereerererererrercree e sereres e ses e rsesessesessesessesassessssessssessssessesassesssnenes 419
VIiEWING FEEUDACKceeereererererereereraererseressessssersssessessssessssessssessessssssassessssesssssssssssssssssessssessensssssnaes 423
ReSpONSES 10 FEEUDACK..........cevererecccc e e 423
Communication BetWeen WOIKSPACESccevereererrerereerereresersssersesessesessessssessssessesessssssssssssessssesssseres 423
Team Development ULIlITIes........ccocvvrrcninnnin s se s sn e snesneas 424
Team Development SEHINGS ... s 424
REIEASE SUMMAIYccieeieierereci e a s esa e e s s se s s s et sesne e e e s ns e s e 425
ENADIE FIlES ... ————————— 426
Feature ULIIIES ... s 426
MaNAQE FOCUS ATBASecuecereriecerisse e se s e st a s se s e s e ae e b s s ae e e e s as e e sesnennnnas 427
UDOALE ASSIGNEESccerereccesiriece e se e se s se et a e e e s e e e A e ae e e s s Re e e e s ne e e sesnnannnas 427
VIBW FIlES ..ot 427
PUPGE DALa.......c.coeeccccre e e AR e e e AR e 427
MaANAGE NBWS ... e e e AR e R e R e R e R e e 428
MANAGE LINKScveereiieciresin et a s et b s bR e ne e ae e e nn e R e e 428
User Roles for Team Developmentcocoeeeeeccrescrs s ses s s s s sesenns 429
E3 1111 P2 7SS 429

xvii

CONTENTS

Chapter 16: Dynamic ACtiONSccccceerrrrmmmmmsssssssssnnmmssssssssssssssssssssssssssnssssssssssssnns 431
Dynamic Action BENEfitSccverrrsnsnsessessesses s se s s e s sns s snnnns 431
Breaking Down DynamiC ACLIONSccocuverenmnesnnmsessssesss s s sessssnsssnes 431
Dynamic Actions in the Help Desk Application.........cccccvvrvrnrvennensesses s sessessenenns 432
LS L (100 TS 111 R 432
USING PAQE-LEVEI EVENTSc.eeeeeeecreeeree s res e reraeseree e saesesaesas e ssesessesessssassesassessssesssssassassesassesssnenes 439
Dynamic Actions with Multiple Triggering EIBMENLSccceccvevererererrererererseree s sersesesaesessesssenes 441
Dynamic Actions USING PL/SQL..........cccoeorerrrerereresereserereseressessesessesessessssessssessssesssssssssessesassesssnenes 443
Dynamic Actions USiNG JAVASCHIPLcccvcevrrererirerere e rereres e ree e sessesessesasessssessssessssesaesassesassenes 445
SUMMEAIY ...ttt a e e s ae e e a e e s n e e ae e e nennnens 447
Appendix A: Page Designer Walkthrough and Referencecccccuseennsnssssnnssnans 449
Page DeSigner OVEIVIBWcccuceeerrierensesesesessesesessssessesessessssesssssssesssssssessssesssssssens 449
Page Designer TOOIDAN..........coeeeeeeereree e sn s sn e snesnesa s snesnesnenns 451
L= c 5T 453
CeNTral PANE.......coueeeeecrerer et e r e s e e e p e e s 454
6T To I 1T | OSSPSR 455
IMESSAGEScoveuerreeiresere st r s s e se e e R e s R e e R e e R e e e Re R e Re R e e R e e Re R e Re R e Re R e e R e e ns 457
PAJE SBAICH ...t R e e AR e e 458

5 1] SRS 459
Property EQITOr ..o sse s e sn s snesn e sn e sn s snesn e sn e nn s sn e nn e nnnnnn 460
(671 TSR 467
Keyboard SNOMCULS.........ccceceieeeriercrire e e 467
SUMMAY ...t a s s ae e s r e e s a e s aenn s nnnnnnnns 468
INA@X.eeiiiiisnnnnnnssssnnnnnssssnnnnnssssnnnnessssnsnsessssnnnnsssssnsnnsssssnnnssssssnnnessssnnnnessssnnnnessssnnnnnsssn 469

xviii

About the Author

Doug Gault is a Consulting Member of Technical Staff at Oracle
Corporation and has been working with Oracle since 1988, starting with
version 5.1B, SQL*Forms 2.0, and RPT/RPE He has focused his career on
Oracle’s development technologies, spending the majority of that time
dedicated to web-based technologies, including the OWA Web Toolkit,
PL/SQL Server Pages, WebDB, Oracle Portal, and more recently HTML-DB
and APEX.

His many years of Oracle experience have taken him all over the
world to participate in some truly groundbreaking projects. Doug has
presented and participated in roundtable discussions at a number of
conferences, including Oracle OpenWorld, UKOUG, and ODTUG’s
APEXposed & Kaleidoscope conferences. He holds an Associate’s Degree
in Computer Science and an honorary Master’s Degree from The School of
Hard Knocks, believing there is no replacement for hard-earned experience.

Doug can be found on Twitter as @dgault_apex and on his blog at
douggault.blogspot.com.

Xix

vww allitebooks.conl

http://douggault.blogspot.com
http://www.allitebooks.org

About the Technical Reviewer

Warren Capps, president of llluminations Inc, has worked with Oracle
since 1987 when he worked on version 5.1a. Since 1991, his principal
efforts have been spent in training clients in the use of Oracle products,
concentrating on database server technologies. He is a well-known
presenter at user-group conferences and has written numerous articles
and book reviews for a variety of publications. He also ran an Oracle
bookstore for ten years and is a retired Navy Commander.

When not teaching, Warren has myriad activities to keep him busy.
He is an avid photographer and has run photography workshops in
southern New Mexico. His photography has led him to visit over
25 countries. Additionally, he plays classical guitar, collects coins, and
loves to travel the country with his wife and cat. He is currently a resident
of Austin, Texas.

XXi

Acknowledgments

First, my heart-felt thanks to all the co-authors of the original version of this book: Karen Cannell, Patrick
Cimolini, Martin D’Souza, and Tim St. Hilaire. Warren Capps also needs to be thanked for his technical
review efforts and his input on content and form. If not for these wonderful people, this book may never
have come to be. The opportunity to work with such a talented and distinguished group of individuals has
been a pleasure.

I'd also like to thank a few people who have been driving forces in my life: Kerry Osborne for providing
me with an immense amount of mentorship and encouragement over the years, even after having left his
employ; Cary Millsap for his friendship and helping to solidify in my mind how to think objectively about
technology and to use proof to find the truth; and last but not least, Scott Spendolini for his all-around
support before, during, and after the book. Without these people, I wouldn’t be where I am today.

—Doug Gault

xxiii

CHAPTER 1

An Introduction to APEX 5.0

Welcome to the wonderful world of Oracle Application Express (APEX). You're about to learn how to use
a tool that will revolutionize the way you think about and approach writing web-based Oracle systems. It
certainly has done so for me.

Prior to the advent of APEX, developing fully interactive, web-based systems for data that resided within
an Oracle database almost always meant learning a new and often complex language like Java, .NET, or PHP
and then figuring out how to integrate your chosen language seamlessly with that data. Often this also meant
trying to incorporate business rules that were already coded in the form of PL/SQL program units.

In such situations, it could take months or even years just to become proficient enough with your
chosen language to begin to write a functional system. If you're like many developers, you become frustrated
with the fact that you've spent an inordinate amount of time doing what seems to be a relatively easy task.

Fear not! The days of long-winded and complex web-development platforms may be behind you.

What Is APEX?

APEX is a 100% browser-based rapid application development (RAD) tool that helps you to create rich,
interactive, Oracle-based web applications very quickly and with relatively little programming effort.

There are many RAD development tools and platforms on the market. If you're dealing with data that
resides in an Oracle database, a number of things make APEX distinctive and thus more attractive as a
development platform. First and foremost, APEX is built on and uses as its core languages SQL and PL/SQL.
This is a huge advantage for those of you who have already been working with the Oracle database, because
it means you can immediately draw on what you know. Even if you don’t have an Oracle background, but are
going to be working with an Oracle database, you need to learn about its particular flavor of SQL and will at
some point likely find a need for the PL/SQL procedural language.

PL/SQL program units become even more beneficial when migrating from an Oracle-based system that
already has a significant amount of business logic coded into stored PL/SQL program units. In this instance,
you can almost immediately take advantage of that logic with very little effort or changes to the existing code.

Another great advantage is that APEX is a declarative tool that provides a feature-rich core of
functionality designed to make your job easier. Because APEX takes care of many of the underlying functions
common to all web-based applications, you can focus on the logic specific to your application.

A large share of what you need to accomplish can be done using one of the many built-in wizards
provided as part of the APEX Application Builder. The wizards walk you through the process of defining what
you want your application to do and then store that information as metadata. Once a wizard is complete, you
can edit and enhance the functionality or even replace it with your own custom SQL and PL/SQL routines.
After you become proficient with APEX, you might even find yourself bypassing the wizards altogether and
generating more-complex definitions directly.

CHAPTER 1 © AN INTRODUCTION TO APEX 5.0

During the course of this book, you'll likely discover that you want a few other tools at your disposal,
but, in truth, you could easily develop a very rich application using nothing but your web browser and what
APEX provides for you.

A Brief History of APEX

APEX has been around for quite some time—perhaps even longer than most people know. The first public
release of APEX, or HTML DB, as it was called then, came in 2004, but its history reaches back a long way.

Ancient History

APEX has its roots in technology that has been around for quite a while. In fact, parts of the PL/SQL Web
Toolkit, which is used under the covers by APEX to generate the HTML that is sent to the browser, date back
to as early as 1994.

At that point in time, you could actually write web applications in PL/SQL by hand, and unfortunately
many of us did. This required not only a thorough knowledge of PL/SQL and HTML, but also the patience of
a saint and the determination of a headstrong mule. The end result wasn’t very pretty, and it was definitely
not secure by today’s terms, but it was functional, if somewhat limited.

Not long after, Oracle introduced PL/SQL Server Pages (PSPs). This involved first coding the static
HTML and including special Oracle markup to indicate where dynamic data would go. Once you had the
output looking as you wanted, you then ran it through a program called LOADPSP. This would translate
the raw HTML and the special Oracle markup into a PL/SQL procedure that, again, used the PL/SQL Web
Toolkit to emit the HTML, including the dynamic data you requested. At the time, this was a huge leap
forward. I worked at a company where I built an entire framework using PSP technology and deployed it at
several clients.

Finally, in 1997, WebDB came on the scene. The true grandfather of what is now called APEX, WebDB
was revolutionary in that it was a 100% web-based tool that allowed developers to design web applications.
It was written entirely in PL/SQL, even though Java seemed to be taking over the world. Developers could
point WebDB at their database and generate code that would produce forms, reports, charts, and calendars.
There was no session-state management, and there were no templates; once the code was generated, you
couldn’t go back through the tool.

WebDB allowed a large number of companies that wanted to jump on the web-based bandwagon to do
so without spending vast amounts of time and effort retraining their staff. As a tribute to its success, I know
of a number of companies that still have WebDB systems running in production environments.

Unfortunately, WebDB’s days were numbered. Because it generated code (and if you didn’t like the code
it generated, then too bad for you), it had already begun to fade from favor by the time it was absorbed into
Oracle’s Portal product. However, creator Mike Hichwa didn’t forget the glimpse of greatness that WebDB
had seen.

More Recent History

Around 1999, Oracle CEO Larry Ellison presented Mike Hichwa (VP of Software Development) with the
task of creating an internal calendaring and scheduling system for Oracle Corp. The original remit was to
use WebDB to generate the initial code and then hand-code all the changes from that point forward. Mike,
however, saw this as an opportunity to completely rewrite WebDB into something that could be far more
useful. Thus, with the help of Joel Kallman and Tom Kyte, Oracle Flows was born.

CHAPTER 1 " AN INTRODUCTION TO APEX 5.0

Based on the success of the internal calendaring and scheduling system, the team was allowed to
move forward toward making Oracle Flows a product. In 2001, using what was then known as Flow Builder,
Mike and his team began implementing systems for various customers, including one situation where they
managed to replace a Java development project that was going horribly wrong.

By 2003, the team had proven the tool’s power, and they were given permission to release it as a
product. HTML DB 1.5 was released to the public as a no-cost option of Oracle 10gR1.

Since then, various releases have been introduced, each providing improved features and functionality.
The following is a very brief list of the releases and some of the more notable features:

e HTML DB 1.6 (2004) introduced themes, master-detail forms, page groups, page
locking, and some multilingual capabilities.

e HTML DB 2.0 (2005) introduced SQL Workshop, a graphical query builder, a
database object browser, and session-state protection.

e APEX2.2(2006) introduced packaged applications, the APEX dictionary views, and
the access control wizard.

e APEX3.0(2007) introduced PDF printing with BI Publisher, migration from
Microsoft Access, and page and region caching.

e APEX 3.1 (2008) introduced interactive reports, the runtime-only installation
capability, and improved security.

e APEX3.2(2009) introduced a migration helper for Oracle Forms-based systems and
various security enhancements.

e APEX4.0(2010) was a huge leap forward, introducing dynamic actions and plug-
ins—declarative ways to introduce server-side logic and extend the core APEX
environment, respectively. Also introduced was the new Team Development
module.

e APEX4.1(2011) included a new user-facing data-uploading feature, enhanced error-
handling capabilities, and much-improved support for tabular forms.

e APEX4.2(2012) originally introduced some new themes as well as enhancements
to the debugging API, but over its more than two-year life span, patch releases
introduced such changes as HTML 5 charting and deeper security enhancements.

APEX 5.0 and the Future

And so we arrive at the release of APEX 5.0. While the changes introduced with versions 4.0 through

4.2 undoubtedly changed the landscape of APEX development, the changes introduced in version 5.0
have brought APEX to a point where it can rightly be compared with many of the popular desktop-based
development environments.

The original focus of APEX 5.0 was to make development of rich, interactive web applications easier
by providing the developer with a vastly enhanced development environment. However, the development
team has introduced so many new features—indeed, new ways to attack problems—that it will be hard not to
choose APEX as the preferred development platform for Oracle-based applications.

APEX’s new Page Designer Integrated Development Environment (IDE) completely changes the way
developers will interact with page design. Modeled after many of the popular desktop IDEs, developers now
interact with items, placement, attributes, and actions all on one page. A new drag-and-drop page-layout
interface has been introduced that allows developers to easily position regions and items. Group editing

CHAPTER 1 © AN INTRODUCTION TO APEX 5.0

allows developers to edit the attributes of several items at once. The only downside to the new Page Designer
is that you may find yourself wanting a bit more screen real estate due to the nature of its layout. However,
with widescreen monitors becoming ubiquitous, this shouldn’t be an issue for most.

Apart from the new Page Designer IDE, one of the most exciting new features of APEX 5.0 is the
Universal Theme. This new application user interface does away with the need for the complex templates
from days gone by and enables developers to build more modern, responsive, and consistent applications
without needing to know the intricate details of HTML, CSS, or APEX template design.

The new Universal Themes (Desktop theme 42 and Mobile theme 51) allow you to adjust a number
of attributes with what is called a Theme Style—a Cascading Style Sheet (CSS) that is added to the base
CSS. This can be done via the new Theme Roller tool, allowing you to visually alter a theme. The Universal
Themes also allow you to easily customize how items on the page are displayed by using Template Options.

After having been in the cards for quite some time, the Flexible Workspace Authentication has finally
been implemented by the APEX team; this allows APEX administrators to define how APEX itself will
authenticate developers. Much like APEX applications, workspaces may now be authenticated against Single
Sign-On servers, LDAP, and so forth.

Interactive Reports are no longer limited to being one-per-page, freeing you from the restriction that
had plagued them since their inception. Interactive Reports also get a few new features. A Pivot View has
been added that allows end users to select the column(s) and provide the function(s) by which to pivot the
report. This was functionality previously available only by either a lot of hand coding or by creating or using
plug-ins. When using the new Universal Theme, Report column headers can now be defined so that they
remain fixed in position while the user scrolls down the page.

Native support for Dialog page types has been introduced, thus allowing any page to be displayed either
normally or as a pop-up dialog. Pages can be defined as either “Modal” or “Non-Modal” Modal pages do not
allow the end user to interact with the underlying page, whereas Non-Modal pages allow such interaction.

New jQuery Mobile and Tablet themes have been introduced and make use of the newer features of the
latest jQuery Mobile libraries. Panels, pop-ups, and dialogs (among other things) are now all available in the
mobile interface.

An improved charting engine provides enhanced performance for large datasets. Improvements to
accessibility for the visually impaired have been added. A new APEX_AUTHORIZATION package has been
added to aid in the management of authorization within an application. And the list goes on.

Asyou can see, the APEX core functionality continues to grow with each release. But what you may not
know is that you can help drive the future direction of APEX. By going to the following URL, you can not only
request new features, but also view and vote on features that others have requested. You need an Oracle
Technical Network account, but it’s free and easy to sign up:

https://apex.oracle.com/pls/apex/f?p=55447:1
To get a view of what the APEX team is committed to providing, you can read the most recent Statement
of Direction (SoD). It may take a short time after a release for this to be updated, but it normally contains an

overview of the main functional areas for the next planned release. You can find the SoD at the following URL:

www.oracle.com/technetwork/developer-tools/apex/application-express/apex-sod-087560.html

What You Need to Get Started

The goal of this book is to get you started using APEX, to launch you in a way that enables you to grow
toward mastery of the product. To begin, you need three things: access to an APEX instance, access to a web
browser, and a copy of SQL Developer.

https://apex.oracle.com/pls/apex/f?p=55447:1
http://www.oracle.com/technetwork/developer-tools/apex/application-express/apex-sod-087560.html

CHAPTER 1 " AN INTRODUCTION TO APEX 5.0

Access to an APEX Instance

This is definitely a hands-on book, so to work through the examples and exercises you need access to an
instance of APEX 5.0. There are a number of different ways you can access APEX; depending on your level of
comfort and expertise with Oracle, some may be better for you than others. Here is a description of the three
most common scenarios:

e By far the easiest is to sign up for an account on Oracle’s hosted version of APEX at
https://apex.oracle.com. It’s free for nonproduction applications and is a great
place to get started, because you don’t have to worry about installing either the
database or APEX.

e Ifyou already have an Oracle database installed locally, you can download and
install APEX 5.0 into that instance. Simply go to the Oracle APEX home page at
http://otn.oracle.com/apex and download the latest version of the software.

e Ifyoudon’t have an Oracle database already but would like to install one locally,
you can download a free developer’s license version of the database from Oracle
Technology Network (OTN) athttp://otn.oracle.com/database. Both Oracle 11g
and 12c run APEX 5.0. Both allow you to install APEX (albeit an earlier version) as an
option during the database install.

Although having a locally accessible instance of the Oracle database gives you more direct access to the
data, it’s definitely not necessary for completing the exercises in this book. All code and instructions have
been written so that they can be completed on Oracle’s hosted instance with no special access required.

Note Oracle provides very good documentation on the installation process for both the database and
APEX, so it isn’t covered in detail here. However, if you're planning to install APEX on an environment in your
organization, you should coordinate with the database administrator responsible for that instance to ensure that
no mishaps occur.

Web Browser

The APEX documentation states that to view or develop APEX applications, you must have a web browser
that supports cookies, JavaScript, HTML 5, and CSS 3. However, although you can deploy to any browser that
supports these things, the list of supported browsers is fairly narrow. Currently, the following browsers are
supported: Internet Explorer 9+, Firefox 35+, Apple’s Safari 7+, and Google Chrome 40+.

Without getting into a religious debate about which web browser is the best on the market, the author’s
preference for development is either Firefox or Chrome due to the number of developer tools and add-ons
that can help you with APEX development. Note that because of the difference in the way each browser
interprets HTML and JavaScript, you must test your application in any and all web browsers that your target
audience might use.

SQL Developer

As mentioned before, all the exercises and scripts in this book can be loaded and run directly within the
APEX interface. However, if you have chosen to install or have access to a local instance of the Oracle
database, a SQL IDE will definitely make your life easier.

https://apex.oracle.com/
http://otn.oracle.com/apex
http://otn.oracle.com/database

CHAPTER 1 © AN INTRODUCTION TO APEX 5.0

SQL Developer is a free SQL and PL/SQL IDE provided by Oracle. You can download SQL Developer
from the OTN’s home page at http://www.oracle.com/sqldeveloper.

Using SQL Developer, you can browse database objects, edit row data, develop and test stored PL/SQL
program units, code and test SQL statements, and interactively debug PL/SQL code. SQL Developer also
has many direct integration points with APEX that make reporting in, monitoring, and maintaining APEX
instances and applications easier. This book doesn’t cover those, but it’s definitely worth your time to look
into this tool.

Summary

Oracle Application Express has come a long way from its simple beginnings, and the APEX community is
poised at the beginning of a new cycle of growth. APEX 5.0 provides so much possibility and promise that
it’s hard not to be excited about what the future holds. With that spirit, you're ready to begin your journey to
discover how APEX can make development easier and more fun.

http://www.oracle.com/sqldeveloper

CHAPTER 2

A Developer’s Overview

You're probably anxious to get started, but there are a few concepts you should understand before you jump
into APEX development headfirst. This chapter will introduce the fundamental development architecture of
APEX and then walk you through the different areas of the developer interface.

You will delve deeper into the details as you go through the book and put the architecture to work, but
it will help tremendously to know how things are structured ahead of time. This chapter is designed to ease
you in, but it isn’t a complete guided tour of every nook and cranny. Be patient; you'll get there.

The Anatomy of a Workspace

APEX was designed from the beginning to be a multi-tenant architecture where many different development
environments (called workspaces) can exist in a single APEX instance. For instance, apex.oracle.com,
Oracle’s free hosted instance, holds over 10,000 active workspaces, each of which is a completely separate
environment unable to see or interact with any of the others. You can think of this as Software as a Service
(SaaS) or a cloud-computing architecture, but basically it means each workspace is distinct and segregated
from all others.

In simple terms, each workspace represents a virtual private container in which developers create and
deploy their APEX applications. The development process takes place in the context of a workspace, so it’s
important to know how a workspace is structured. Figure 2-1 uses database entity-relationship diagram
parlance to help explain the makeup of the objects in a workspace.

Parse as

Users

Figure 2-1. Logical makeup of a workspace

CHAPTER 2 © A DEVELOPER’S OVERVIEW

A workspace may have:

One to many users: These users may one of three types: Administrator, Developer,
or End User.

Zero to many applications: Applications can be added from the list of packaged
applications, imported, or created from scratch.

One to many schemas: Although a workspace must be assigned at least one
schema when it’s created, an Instance Administrator may assign multiple
schemas to a workspace.

There can be many applications and many schemas in a workspace, but an application may only parse
as one (and only one) schema, which can only be set during development. The following sections delve
more deeply into this to give you a full understanding of how these concepts relate.

APEX Users

To log in to an APEX workspace, you must have access to a valid APEX user. A number of different user roles
are available that dictate what you can do when you log in. The roles are as follows:

e Instance Administrators are special users who manage and maintain the overall
APEX instance. They can set instance-level preferences and messages, create and
manage workspaces, monitor space utilization, and perform many other actions
related to the overall APEX installation. Instance Administrators are only able to
log in to the special INTERNAL workspace, which houses the APEX Admin Services
application.

e Workspace Administrators are responsible for managing the details of a specific
workspace and can manage user accounts related to the workspace, monitor
workspace activity, view log files, override developer locks and settings, and so
on. Although it isn’t good practice, the Workspace Administrator can also act as a
Developer, creating and modifying applications.

e Developers are the users who create and edit the applications in the workspace. They
have access to the underlying tables in the schema(s) assigned to the workspace
and may create and modify database objects and stored PL/SQL units. Most people
writing APEX applications only need this level of access.

e End Users are only able to run applications in a workspace. They don’t have direct
access to any of the underlying database objects, nor do they have access to any of
the APEX development modules. End users can’t log directly into a workspace.

With the exception of the APEX Instance Administrator, in a default installation APEX users are specific
and unique to a workspace, meaning you can have users with the same name in multiple workspaces in a
single APEX instance, but each of these users is unique. They can have their own passwords and settings and
aren’t linked together in any way.

APEX 5.0 introduces the ability to use an external repository, such as Single Sign-on or LDAP, as a source
to assign and validate APEX users, meaning that a single user could have access to multiple workspaces.
However, this functionality is not set up by default and requires an Instance Administrator to configure.

When you're developing, you should get in the habit of logging in as a Developer as opposed to a
Workspace Administrator. Several safeguards are available to help keep developers from stepping on each
other in a workspace. If you log in as a Workspace Administrator, these safeguards are bypassed, and you
may accidently interfere with something someone else is working on. Although this isn’t a problem in a
workspace with only one developer, it’s still good to get into that habit.

8

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 * A DEVELOPER’S OVERVIEW

Note This book uses the last three types of user. It assumes that APEX has been installed, a workspace
has been created, and you have been given the Workspace Administrator’s login credentials. If you’re using
the hosted instance at apex.oracle.com, then the user name you were given when you signed up has the
credentials of a Workspace Administrator. If, however, you're using a local instance, either refer to the APEX
documentation or get your Instance Administrator to help you set up a workspace.

Applications, Pages, Regions, and Items

Although a workspace starts off basically empty, you can have many applications that reside in a workspace.
There is no specific rule, but it’s likely that all the applications in a workspace share something: they might
all use the same underlying database objects, target the same user community, or use the same method for
authenticating users.

As you build an application, you add new pages and build out those pages with regions and items.
Figure 2-2 shows the hierarchy of the different types of objects.

Workspace

Figure 2-2. General application hierarchy

CHAPTER 2 © A DEVELOPER’S OVERVIEW

Applications are basically groups of pages that perform a task (or set of tasks) related to a business
function. During the course of this book, you'll build one application in a single workspace, but it’s
important to know that in a typical development environment, you'll probably be working on many
applications across several workspaces.

Pages are the basic building blocks of applications and contain both the user-interface (UI) components
and the programming logic that processes the user’s input. We cover the rendering of the UI versus the
processing of user input later, but for now consider a page to be roughly equivalent to a screen in desktop
Ul lingo.

Regions are Ul items that serve as content containers. You can have any number of regions on a page,
and regions can be nested in other regions. This gives you the opportunity to create things like dashboards,
where you might nest a data report region and a graph region in a single parent HTML region.

Items are the HTML form elements that are used to present the Ul to the user. These include things such
as buttons, select lists, text fields, check boxes, radio groups, and so on. There are two categories of items:
page-level items and application-level items. The difference is that the latter are defined at the application
level and aren’t rendered directly on the page. You can think of these as global variables. Page-level items
are defined on a specific page and are assigned to a region in order to control where and how they display to
the user.

There is obviously a lot more to an application than these simple building blocks, but if you understand
the basic hierarchy between these, you'll have a jumpstart when it comes to building your first pages and a
solid foundation when it’s time to perform more intricate tasks.

Workspaces, Applications, and Schemas

Although the relationship between workspaces and applications is straightforward, it becomes a bit more
complex when you introduce the relationship with database schemas. Figure 2-3 diagrams this relationship.

Applications

Figure 2-3. How schemas relate to workspaces and applications

When a workspace is created, it’s linked with at least one, and possibly many, underlying database
schemas. This provides access to database objects such as tables, views, stored PL/SQL program units, and
so on.

When an application is created, it’s assigned a single “parse as” schema from the list of schemas
associated with the workspace. A “parse as” schema is the Oracle database user in which all SQL queries
and PL/SQL calls run by that application are executed. So, if your application was defined with a “parse as”
schema of DOUG, a query such as

select * from emp
would execute in the database as if it were written

select * from DOUG.emp

10

CHAPTER 2 * A DEVELOPER’S OVERVIEW

Because APEX applications are portable and may not necessarily be run in the same schema they were
developed in, it’s not good practice to hard code the schema names into your SQL or PL/SQL. Instead, APEX
provides a replacement variable (one of many you'll be introduced to throughout the course of this book) for
the “parse as” schema. The #OWNER# replacement variable is substituted for the actual “parse as” schema for
the application at runtime. So the statement

select * from #OWNER#.emp
resolves to
select * from DOUG.emp

In the most common implementations, a workspace is created and associated with a single underlying
database schema. The applications developed in that workspace have their “parse as” schema set to the only
schema associated with the workspace and use the database objects belonging to that schema.

Where a workspace has more than one schema assigned to it, things can become a little more complex.
You might be tempted to think that if you associate three schemas with a workspace, any application in that
workspace can automatically access the data in all three schemas. However, you would be mistaken.

Because an application is assigned one—and only one—“parse as” schema, all SQL statements and PL/
SQL calls are executed as that schema. Although the workspace may be associated with multiple schemas,
the application itself isn’t. If you want to access data in a schema other than the application’s “parse as”
schema, you must make sure the correct database-level grants are in place, just as you would when using
any other Oracle tool or development environment.

Take a look at the example shown in Figure 2-4, where two tables you wish to join as part of a SQL
statement are owned by separate schemas.

JOEY.DEPT

DEPTNO EMPNO
DEPT_NAME | ENAME
LOCATION DEPTNO

Figure 2-4. Tables joined across schemas

If your “parse as” schema is DOUG, then you must be specifically granted privileges on the objects in the
JOEY schema to be able to access it. To do this, you sign on to the database as JOEY (or as a DBA) and grant
the appropriate database privileges on JOEY.DEPT to DOUG.

In this example, if you needed to join the two tables together in a select statement, granting the SELECT
privilege on JOEY.DEPT to DOUG would suffice. Then, you could write your select statement as follows:

select e.empno,
e.ename,
d.dept_name,
d.location
from #OWNER#.emp e,
JOEY.dept d
where e.deptno = d.deptno

The #OWNER# substitution variable would be resolved to your “parse as” schema (DOUG), and the join
would work correctly as long as the correct privileges were in place.

11

CHAPTER 2 © A DEVELOPER’S OVERVIEW

Note Because the grants that allow the select from the JOEY schema are put in place at the database
level, it isn’t necessary to associate the JOEY schema to your workspace. You only need to associate a schema
to a workspace if you'll be using it as the “parse as” schema for an application in that workspace or need to
access the schema objects directly from within the SQL Workshop.

A Final Word on Workspaces

Asyou have learned, an APEX instance can have many workspaces. But how many workspaces should there
be? The answer isn't straightforward.

Unless you're in a very small organization with very few apps, you probably shouldn’t have only one
workspace. On the other hand, you probably shouldn’t create a new workspace for every new application
you code, either.

There are a couple schools of thoughts on this, but I tend to think in terms of application suites. If a
number of applications are performing similar tasks against the same underlying data sets and are aimed at
the same target set of users, then they would probably do well in the same workspace.

The key is to use your judgment and try to keep things easy to develop and maintain. There is nothing
worse than logging in to a workspace to find you have to page through tens or even hundreds of apps to find
the one you want to work on.

A Tour of the APEX Modules

Now that you have a little background on how things are logically architected, it’s time to get a closer look at
the APEX development environment. This section will introduce you to the different sections of the APEX
environment and give you an overview of how things are laid out.

Figure 2-5 shows a hierarchical layout of the APEX menu structure. Later, you will look at each of the
main sections and glimpse what'’s under the covers; this is just an introductory tour. You will get a much
deeper look as we work our way through the development processes.

Asyou can see, the development environment is broken into five main sections:

e The Application Builder is where you create and modify applications and pages, and
it’s where you’ll probably spend most of your time.

e The SQL Workshop is where you deal directly with the underlying database objects
and their related data. Think of it as a web-based version of SQL*PLUS with some
GUI goodness thrown in to make things easier.

e Team Development is the section that lets you enter and track information related to
the development of APEX applications.

e Packaged Apps provides a way to install and manage the myriad of applications
that come with Oracle APEX. Many of these applications can be used out of the
box to solve real business problems. Others are merely sample applications to help
demonstrate the capabilities of APEX.

e Administration is where you can manage the details of your workspace—its defaults,
users, groups, and so on. Be aware that a Workspace Administrator has more options
available to them than a standard developer has.

12

CHAPTER 2 * A DEVELOPER’S OVERVIEW

Home Page
m"g‘s Object Browser Milestones Apps Gallery Manage Services
I | | | |
Av:;bm SAL Commands Features Dashboard M:::%‘:;ﬁ:s
| | I | I
Create SQL Seripts To Dos Administration Monitor Activity
| I | |
Import Utilities Bugs Dashboards
| | | |
Export RESTHul Services Feedback i
| I
Workspace Utilities Utilities
|
Migrations

Figure 2-5. APEX 5.0 hierarchical menu structure

The Home Page

Once you log in to your workspace, you're presented with the workspace Home page, as shown in Figure 2-6.
The Home page is your gateway to the rest of the development environment and provides some high-level
information about what'’s going on in the workspace.

13

CHAPTER 2 * A DEVELOPER’S OVERVIEW

B @ Fhossie Acpucston Express Doug
“« cH WRSD/apen Tip=4500:1000:1 190190587 4548:-N0. 4 0O =

ORACLE Appication Express

=

Top Applications Top Users Hews and Messages

Dashboard

B Doug Gaue s This workspace is backed up nightty

05 T Producnion reisass dase for 7.1.0 i bean updated. PLEASE
ax TAKE NOTE 5 0

Available Updates

Accessibiity Mode

Standard

Figure 2-6. APEX development Home screen

Along the top is the navigation bar containing the main navigation structure available to you throughout
the developer interface. It gives direct access to many of the sections you will need quick access to while
you're developing applications. It’s worth noting that each main option of the menu bar is broken down
into two pieces. For instance, if you click directly on the Application Builder item, you're immediately taken
to the Application Builder home page. However, if you click the small downward-pointing arrow just to the
right, you're presented with a more detailed drop-down menu that lets you choose your destination a bit
more granularly, as in Figure 2-7

14

CHAPTER 2 * A DEVELOPER’S OVERVIEW

Application Builder @ SQ

Database Applications

Websheet Applications

Create
Import

Export
Workspace Utilities >

Migrations

Figure 2-7. Using the drop-down menus on the menu bar

At the right of the navigation bar is a set of four menu options represented by icons, as shown in
Figure 2-8.

Q S QN Doug v
Figure 2-8. Right-hand icons on the navigation bar

First is a search icon that, when clicked, allows you to perform context-sensitive searches. The context
of the search depends on where you are in the Application Builder. For instance, if you're on the workspace
Home page, your search is across the entire workspace. However, if you're in the Application Builder or the
Administration section, the search is limited contextually to those specific areas.

Second is the Administration menu. This menu will be available to you whether you are a Workspace
Administrator or a Developer. The difference will be what functionality you have access to. Developers will
have access to monitoring certain areas of the workspace activity and to the dashboards, while Workspace
Administrators will have full access to all functionality including user maintenance and service requests.

Third is the help menu, which provides access to online documentation, the APEX Support Forums, the
APEX section of the Oracle Technical Network site, and an About section.

Last is a link to the profile of the currently logged in user. Here, the user will be able to edit their details,
update their profile picture, and change their password.

At the very bottom of the browser is an information region that displays the currently logged in user, the
current workspace, the language, and the current version of Oracle APEX.

15

CHAPTER 2 © A DEVELOPER’S OVERVIEW

The rest of the page is dedicated to either giving you a quick link to the four main sections or providing
you with information about what’s going on in the workspace.

The first two regions, from left to right, show an overview of the activity in the workspace. They show the
Top Applications and the Top Users in the workspace. The News & Messages region allows the developers
in a workspace to enter information they want others in the workspace to see. In a new workspace, there
probably won’t be anything in these regions, but as you work your way through the book, you'll see that start
to change.

Notice that most of the main pages for each section of the development environment adhere to this
dashboard-style home page interface, the notable exception being the Application Builder. Let’s look at that
section first.

Application Builder

The Application Builder is the core of the APEX application-development environment. Whereas you'll use
the SQL Workshop to manipulate the underlying database objects, you'll use the Application Builder to do
most of the real work when it comes to coding, testing, and debugging your applications.

The Application Builder Home Page

Clicking the Application Builder menu option takes you to the Application Builder home page. Like most
of the home pages, it’s laid out with the menu bar across the top and regions that hold tasks and quick links
down the right side.

The main difference is that Application Builder home page doesn’t house any dashboard-style
summaries. Instead, this is where you see a list of the different applications contained in your workspace.
(Figure 2-9 provides an example.) It’s possible, depending on your APEX instance settings, that you might
see some sample applications installed by the Workspace Administrator, but don’t be alarmed if you don’t
see any applications at all.

16

CHAPTER 2 * A DEVELOPER’S OVERVIEW

® 00 Huspkuon tuide b |
« C # [wesQapaur

Figure 2-9. The Application Builder home page

Figure 2-9 shows one application in the workspace, named Sample Master Detail. However, there isn’t
much information about it other than its name and the application ID (118). This is where you begin to see
the beauty of what APEX can do, not only in the developer UI, but also in your applications.

The list of applications you see is actually a style of report called an Interactive Report (IR). IRs allow us
to customize how reports and their contents are displayed. IRs are used throughout the APEX development
interface and can also be used when creating your own applications. They’re extremely powerful tools, and
you'll use them a lot.

On the right side of the page are three regions that show About information, recently edited
applications, and a link to the Application Migration wizard. You will deal more with these later; for now, we
will drill in to see the details of an application.

The Application Home Page

Clicking any one of the applications listed drills into the Application home page, as shown in Figure 2-10.
This page is very similar to the Application Builder home page, but it shows all the pages in a specific
application. Again, it uses an IR, so you can customize the way you see this data.

17

CHAPTER 2 * A DEVELOPER’S OVERVIEW

® 00 Eaccscan buide x
L= CH VS0/apen/TTp=4000:1 2088204 2085834:NO:RP-FB_FLOW _ID,FA000_P1_FLOW,PO_FLOWPAGE RECENT_PAGES:118,118,118 80 =
ORACLE Appicaton Expess Application Bulder W earn De men R " a

+) Applcasion 118 ® % & B

Applicaticn 118 - Sample Master Deta i Avloatios Froprti Tasks

O 0O
N O] i

1. Home

Figure 2-10. The Application home page

Notice the way the page is structured, with page-related tasks and recently edited pages presented along
the right side of the page. This layout will become a familiar theme as you navigate through the interface.

From here, you can click any of the listed pages to edit that page using the Page Designer. You can also
run, export, and import the application, edit the supporting objects or shared components, and access the
application-related utilities.

The Page Designer

The Page Designer is where you'll be spending most of your time as a developer creating and editing pages,
regions, and items. The Page Designer in APEX 5.0 is a complete departure from previous versions and is now
presented in a way that much more closely resembles traditional Desktop IDE layout. This change has brought
us the ability to manage components and edit their layout and properties from a single-page interface.

18

CHAPTER 2 * A DEVELOPER’S OVERVIEW

One of the biggest changes is that, due to the single-page interface, alterations to a page must now be
explicitly saved. While this may seem disruptive, it actually brings with it some useful functionality. For
instance, now multiple changes can be made and saved all at once, potentially reducing development time.
Also, unsaved changes can now be easily undone.

Another major time-saving feature is the ability to select multiple components on a page using
Shift+Click (or Cmd+Click on Mac). Once multiple items are selected, you can edit their common
properties in the property editor. This can be useful if, for instance, you want to edit the attributes of all
buttons on a page to set their visual properties to all be the same.

Region and item placement has been enhanced with the introduction of a drag-and-drop interface. All
rendering components can be easily placed or rearranged on the page.

The layout of the new Page Designer is quite in-depth and, if you're not familiar with it, can potentially
be a bit perplexing. Appendix A at the back of this book will give you a detailed tour of the Page Designer and
its components, laying out the nomenclature that will be used through the rest of this book. Take a moment
to thumb through Appendix A to familiarize yourself with the terms and the placement of the tools.

It is my goal for the rest of this book to take you through the development process in a way that will
help you naturally learn how to use the Page Designer. However, if you're ever confused by an instruction or
forget what a particular tool is called, referring to Appendix A should help clear things up.

SQL Workshop

The SQL Workshop is a suite of tools that provides developers with the ability to view and manage database
objects in the underlying schema(s) assigned to the workspace. The SQL Workshop home page shown

in Figure 2-11 lets you access each of the underlying tools and gives some high-level information about
recently created objects and commands that that have been run.

19

CHAPTER 2 * A DEVELOPER’S OVERVIEW

B3 56 workahon " Doug
L (0 | VMB0/apeo/t Tp=4500:3002: 2060204208564 -0 =
ORACLE Appicason Express A5t h SOL Workshop Team Develogms aced A . e

APRESS St

Create Object

Figure 2-11. The SQL Workshop home page

Because there may be more than one schema assigned to the workspace, a schema-selection dialog
at right allows you to select and set the default schema for all the tools. You may change the schema you're
working in within each of the tools as well.

The main tools available as part of the SQL Workshop are displayed in the toolbar at the top of the page.
Each of the individual tools deserves its own introduction, so let’s spend some time now looking at what they
are and what they can do. You'll use this area of APEX more heavily when you create the database objects for
your application.

The Object Browser

If you've been working with databases for any length of time, you've probably used one of the more popular

GUI tools that allows you to browse and manage database objects in a schema. The APEX Object Browser is

avery similar tool presented through your web browser. Figure 2-12 shows the Object Browser being used to
examine the table EBA_DEMO_MD_DEPT.

20

CHAPTER 2 * A DEVELOPER’S OVERVIEW

L] L

B otiect Bvowsar Doy
L 2 CH L ———— F 0] =
EBA DEMO MD DEPT
v Table Data indesss Model Costrmints Grants Stamss N Detmsts Trigger
Caodumn Name Data Type Nullabie Dedault Primary Key

Figure 2-12. The APEX Object Browser

The name Object Browser is somewhat of a misnomer, because the tool can be used not only to browse
the objects in the underlying schema(s), but also to create new objects, browse and edit data, delete objects,
and edit object definitions. Although there are some limitations on the types of objects it can manipulate, it’s
powerful enough to do most of the daily tasks that an application developer needs to tackle.

You choose the object type you want to work with by selecting it from the drop-down list in the upper-
left corner. You can search the selected object type by entering a text string in the search box just below it
and clicking the refresh icon to the right. Clicking the name of an object displays its properties along with
links to drill into more details.

Although the interface for the Object Browser is pretty intuitive, there are some interesting things to note. In
the upper-right corner is a drop-down list that allows you to set the current schema. The list contains all schemas
currently assigned to the workspace. You can switch between them simply by choosing a new one from the list.

The SQL Commands Interface

The SQL Commands interface allows you to interact with the underlying schema(s) using standard SQL
commands or PL/SQL as you would in any other GUI tool or in SQL*Plus. The difference is that you can
save the statements for use at a later time. Figure 2-13 shows a simple SQL statement as executed in the SQL
Commands interface.

21

CHAPTER 2 * A DEVELOPER’S OVERVIEW

r

® © ® mEsaL commands x \

€ - C A [) vmS0/apex/f?p=4500:1003:20692042085934::NO:::

ORACLE Application Express ~ Application Builder SOL Workshop - Team Development Packaged A
@ SQL Commands
Autocommit Rows 10 o Clear Command Find Tables
select * from eba demo md deot;
Results Explain Describe Saved SQL History
DEPTNO DNAME
10 ACCOUNTING
20 RESEARCH
30 SALES
40 OPERATIONS

4 rows retumed in 0.01 seconds Download

Figure 2-13. The SQL Commands interface

22

CHAPTER 2 * A DEVELOPER’S OVERVIEW

Although its core function is quite straightforward, the SQL Commands interface is more robust than
it first appears. Beyond the ability to save and retrieve SQL and PL/SQL, it can also run explain plans on
statements and allow you to view your statement history. Therefore, if you ran a script or statement that was
particularly useful, but you forgot to save it, you still have the ability to retrieve it from the history buffer.

The SQL Commands interface also integrates with the Query Builder (described later), allowing you to

load and manipulate saved statements that were built in the Query Builder.

Note By default, all SQL statements executed via the SQL Commands interface are automatically
committed. To override this setting and enter into transactional mode, uncheck the Autocommit check box in the
toolbar. Once this is done, you can manually both commit and roll back your SQL statement.

There is no way to turn off Autocommit permanently, so you need to remember to do this any time you want to

enter transactional mode.

SQL Scripts Interface

The SQL Scripts interface allows you to manage and run sets of SQL commands that are saved into script
files. A single script can contain one or more SQL statements or PL/SQL blocks. SQL scripts coded outside
of APEX can be loaded into the SQL script repository and edited or run from there. You can also create SQL
scripts from scratch using the SQL Scripts interface. Figure 2-14 shows the main SQL Scripts interface page.

B350 scripts

«3CH B0/ a0ea T 7nad500:1 004-5101 74307 B448-NC

ORACLE Appicason Expeess

Edit Crwmar Hame Created

Figure 2-14. The main SQL Scripts interface page

Updated By

Updated

23

CHAPTER 2 * A DEVELOPER’S OVERVIEW

In this example, one script, called database_objects.sql, is loaded into the script repository. By
clicking the Edit icon, you can edit the contents of the script, as shown in Figure 2-15. Helpfully, APEX
provides syntax highlighting in the Script Editor. The editor also has a Find and Replace function and
autocomplete, as well as undo and redo capabilities.

You can also download the script to a local file so you can edit it in your favorite local text editor. When
you're done, simply cut and paste it back into the editor or upload it as a new script file.

[E3 script Editor x

L C i [} vm50/apex/f?2p=4500:60:6191743976446::::P60_FILE_ID:13075402648830871

ORACLE Application Express Application Builder SQL Workshop Team Development F

() saL Scripts Script Editor

Script Name database_objects.sql

1 CREATE TABLE "APEX_ACCESS_SETUP"
"ID" NUMBER,
"APPLICATION_| MODE" VARCHAR2(255),
"APPLICATION_ID" NUMBER,
CONSTRAINT “APEX_ACCESS_SETUP_PK" PRIMARY KEY ("ID") ENABLE
CONSTRAINT "APEX_ACCESS_SETUP 1.IK'I UNIQUE (“"APPLICATION_ID"] ENABLE

)
8 CREATE TABLE “APEX_ACCESS_CONTROL"
) (“ID" NUMBER,

“ADMIN_USERNAME" VARCHAR2(255),

“ADMIN_PRIVILEGES" VARCHAR2(255),

“SETUP_ID" NUMBER,

“CREATED_BY" VARCHAR2(255),

"CREATED ON" DATE,

“UPDATED_ON" DATE,

"UPDATED BY" VARCHAR2(255),

CONSTRAINT "APEX_ACCESS_CONTROL_PK" PRIMARY KEY ("ID") ENABLE,
18 CONSTRAINT "APEX_ACCESS_CONTROL_UK" UNIQUE ("ADMIN_USERNAME", "SETUP_ID") ENABLE

19)3

28 CREATE TABLE "STATUS_LOOKUP"

1 ("STATUS_ID" NUMBER NOT NULL ENABLE,

2 “STATUS" VARCHARZ{4BBB) NOT NULL ENABLE,
PRIMARY KEY ("STATUS_ID") ENABLE

23
CREATE TABLE "TICKETS"

("TICKET_ID" NUMBER,

“SUBJECT" VARCHARZ(255) NOT NULL ENABLE,

28 “DESCR" VARCHAR2(4000),
29 “ASSIGNED_TO" VARCHAR2(S@),
38 "CREATED_ON" DATE NOT NULL ENABLE,
311 "CLOSED_ON" DATE,
32 “CREATED_BY" VARCHAR2(58),
33 “STATUS_TD" NUMBER,
“"LAST_UFDATED" DATE,
“PUBLIC_FLAG" VARCHAR2(1),
CONSTRAINT "TICKETS_PK" PRIMARY KEY ("TICKET_ID") ENABLE

)
CREATE TABLE “TICKET DETAILS"
("TICKET DETAILS_ID" NUMBER,
“TICKET_ID" NUMBER NOT NULL ENABLE,
4 "DETAILS" VARCHAR2(4000),
12 "CREATED_BY" VARCHAR2(58) NOT NULL ENABLE,
43 "CREATED_ON" DATE,
“FILE_NAME" VARCHAR2(255),
"MIME_TYPE" VARCHAR2(255),
“ATTACHMENT" BLOB,
FAMCTOATMT "TTAVET NETATIC DV DDTMADY VEV FY“TTrVET NETATIC TR") CNARIE

R admin g apress Eﬁﬁ en Copyright © 19

Figure 2-15. The SQL Script Editor

24

CHAPTER 2 * A DEVELOPER’S OVERVIEW

Note When you upload a script file to the repository, the name of the script must be unique. You can’t
overwrite an existing script file of the same name with a new version without first deleting the existing script
from the script repository.

Once a script is ready to run, you can click the Run icon in the list (or the Run button in the editor), and
you're stepped through the Run Script wizard. This allows you to choose whether you want to run the script
immediately or run it in the background. If you choose Run in Background, your script is entered into a
queue, and it is executed when it reaches the front of the queue.

Either way, you're taken to the Manage Script Results page of the SQL Scripts interface, as shown in
Figure 2-16. This screen allows you to see the status and certain high-level details of the script’s execution. In
the case of scripts that have been submitted in batch mode, you can also see the status of specific scripts in
the queue.

® 08 Emacess scnpt Resutn Doy
L [] IS0 anex 1T e 45001 220-6101 74367 B4404en sor B desc-NO-RPH2ICH 220 & 0 =
ONRACLE Appicason Express SOL Worksheg -5 ﬂ

| se

Seript Fun By Started Finished Eispaed Status Security Group id Statements 1 Bytes W Rosuts

™ dutatacs cbjects.sql = & Show s

Figure 2-16. The Manage Script Results page

25

CHAPTER 2 © A DEVELOPER’S OVERVIEW

Clicking the View Results icon shows you the final results of running the script. In Figure 2-17, you can
see that the script had errors, the details of which are displayed in the body of the report. If the script were
successful, no errors would be shown, and the statement results at the bottom of the page would show
ZEero errors.

Feedback Rows
Table created 0
Table created 0
Table created. 0
Table created. 0
Table created. 0
Table created 0
Table altered. 0
Table altered. 0
Table altered 0
Function created. 0
C Next »

1
With Errors
§ Show All

Figure 2-17. An example of errors from the SQL Scripts interface

Note Although both the SQL Commands and the SQL Scripts interfaces can accept and run standard SQL
statements, the extended commands of SQL*PLUS aren’t valid in these tools.

The SQL Commands interface throws an error when it encounters any SQL*PLUS-specific commands. However,
the SQL Scripts interface warns the user of the existence of SAL*PLUS commands in a script being run and then
ignores them if the user chooses to continue. Because of this, the SQL Commands and SQL Scripts interfaces
can’t perform many of the functions of extended SQL*Plus scripts.

26

CHAPTER 2 * A DEVELOPER’S OVERVIEW

The Query Builder

Although the Query Builder has been relegated to the Utilities page, it merits discussion specifically because
it’s helpful to beginners. The Query Builder allows you to build SQL select statements using a more
graphical interface, and although it’s not quite drag and drop, it’s fairly intuitive.

When you first enter the Query Builder, you're presented with a screen that lists all the tables and views
available in the currently active schema. Figure 2-18 shows the initial Query Builder screen.

B 2wry Duikiar Doug
C AH VS0 apen T pe4500:1 D02:6181 7430764460 F 0] =

Condmions SOL Fesults Saved SOL

Colums Alas Object Condtion SoriType SortOrder Show Function Group By Delste

o database cbiectssgl & Srowsa

Figure 2-18. The initial Query Builder screen

From here, you can begin to build your query. To include a table in your select statement, simply click
itin the list to the left. A representation of the table is placed in the blank region of the screen above the
Conditions region. You may add as many tables as you like to your query, and can even include the same
table more than once by clicking it again. Notice that if you include more than one instance of the same
table, the new instance is suffixed with a sequence number differentiating it from the original table.

27

CHAPTER 2 © A DEVELOPER’S OVERVIEW

Figure 2-19 shows an example graphical representation for the DEMO_ORDERS table and outlines the
different interactive features.

Table Actions
Show/Hide Columns
li Remove
ORDER_ID 789
CUSTOMER_ID 789
ORDER_TOTAL 789
ORDER_TIMESTAMP | [Ei]
USER_ID 789
T— Select Column for Join
Data Type Indicator
Column Name
Column Selector

Figure 2-19. The DEMO_ORDERS table as represented in the Query Builder

Taken from top to bottom as they appear in Figure 2-19, these action areas are as follows
e Table Actions displays a dialog allowing you to do one of several things:

e Check All allows you to quickly select or deselect all columns of the object for
inclusion in the query being built.

e Add Parent allows you to select and add a parent table, as defined by foreign-
key relationships, to the Query Builder.

e Add Child allows you to select and add a child table, as defined by foreign-key
relationships, to the Query Builder.

e Show/Hide Columns expands and collapses the object so the column definitions are
shown or hidden.

e Remove deletes the table and any of its related clauses from the select statement.

e Select Column for Join is activated by clicking the blank square next to a column
name. Doing so darkens the square and puts the Query Builder into Table Link
mode. Then you can click another blank square, either in another table or in the
same table, and the Query Builder inserts an EQUALITY where clause between the
two columns in the SQL statement.

28

[vww allitebooks.cond

http://www.allitebooks.org

pemo_customers H |

CHAPTER 2 * A DEVELOPER’S OVERVIEW

Data Type Indicator indicates the data type of the column, such as number,
character, date, and so on.

Column Name indicates the column name as defined in the table description.

Column Selector allows you to individually select or deselect columns to be included
in the SQL statement for processing. This may also include columns that you want to
use in the where clause but not display in the output of the SQL statement. The basic
rule is that you need to select all the columns you want to display, but you don'’t
necessarily have to display all the columns you select.

Asyou add and join tables and select columns to operate on, the region at the bottom of the screen
begins to change. This region is subdivided into several tabs, as follows:

The Conditions tab shows one row for each column selected in the area above and
allows you to further define its attributes. (More on this feature in just a moment.)

The SQL tab displays the SQL statement as the wizard builds it. Although it’s not
directly editable, you can easily highlight the statement and copy it to the clipboard
from here.

The Results tab shows the results of running the SQL statement and allows you to
download the resulting data in CSV format.

The Saved SQL tab allows you to save, recall, and manage statements that have been
built with the Query Builder. There are also filters that allow you to search and limit
which saved queries are displayed.

All but the Conditions tab are self-explanatory, so let’s go over this one in a little more detail. Figure 2-20
shows an example two-table join, with five columns selected to operate on.

pemo_oroers M B3

[CUSTOMER_ID 789 OADER 1D iy
CUST FIRST_NAME A CUSTOMER 1D 89
[CUST_LAST NAME A B ORDER TOTAL 8y

CUST_STREET ADDRESS1 A

onper TivesTAMP (]

CUST_STREET ADORESS2 A) USER_NAME A

cusT oy A TAGS A

CUST_STATE A

. . . A

Conditions SOL Results Saved SOL
Column Alias Object Condition SortType Sort Order Show Function Group By Delete

USER_NAME USER_NAME DEMO_ORDERS ac B a i
CUSTOMER_ID CUSTOMER_ID DEMO_CUSTOMERS Asc ﬁ a H
CUST_FIRST_NAME CUST_FIRST_NAME DEMO_CUSTOMERS Asc ﬂ 2] a]
CUST_LAST_NAME CUST_LAST_NAME DEMO_CUSTOMERS Asc a 1 B
ORDER_TOTAL SUM_OF_ORDERs DEMO_ORDERS <500 Ase o SUM | <]

Figure 2-20. An example two-table join

29

CHAPTER 2 © A DEVELOPER’S OVERVIEW

In this example, the following modifications have been applied to the query:
e Changed the alias of the ORDER_TOTAL column to SUM_OF_ORDERS
e Limited the result set to only those records where ORDER_TOTAL is less than 500
e Sorted the records returned by CUST_LAST_NAME, CUST_FIRST_NAME ascending
e Performed a SUM function on the ORDER_TOTAL column
e Grouped the query by USER_NAME, CUSTOMER_ID, CUST_FIRST_NAME, CUST_LAST_NAME

Based on the column selections as well as the restrictions and changes introduced in the Conditions
tab, the SQL statement (as it appears in the SQL tab) looks like this:

select DEMO_ORDERS.USER_NAME as USER_NAME,
DEMO_CUSTOMERS.CUSTOMER_ID as CUSTOMER_ID,
DEMO_CUSTOMERS.CUST_FIRST_NAME as CUST_FIRST_NAME,
DEMO_CUSTOMERS.CUST_LAST_NAME as CUST_LAST_NAME,
sum(DEMO_ORDERS.ORDER_TOTAL) as "SUM OF ORDERs"
from DEMO_ORDERS DEMO_ORDERS,
DEMO_CUSTOMERS DEMO_CUSTOMERS
where DEMO_CUSTOMERS.CUSTOMER_ID=DEMO_ORDERS.CUSTOMER_ID
and DEMO_ORDERS.ORDER_TOTAL <500
group by DEMO_ORDERS.USER_NAME,
DEMO_CUSTOMERS.CUSTOMER_ID,
DEMO_CUSTOMERS.CUST_FIRST_NAME,
DEMO_CUSTOMERS.CUST_LAST_NAME
order by DEMO_CUSTOMERS.CUST_LAST_NAME ASC,
DEMO_CUSTOMERS.CUST_FIRST_NAME ASC

Although the Query Builder is very useful and allows you to put together a basic query fairly quickly
using a simple GUI, it does have its limitations, such as nested subqueries and complex unions. We can use
the Query Builder to get the skeleton of a query defined; we can then take the query to the SQL Commands
window or a SQL IDE and fine tune it from there.

As a final note, it’s worth mentioning that the Query Builder is linked to from several places in APEX,
so any time you're prompted for a SQL statement (for example, as the basis for a report), you can open the
Query Builder in a pop-up window and return the query to the calling form.

Utilities
The SQL Workshop Utilities section gives you access to tools and reports that help you view and manage
information about the underlying database objects and their data. This section introduces each tool set and
its main purpose. However, the majority of these tools are very straightforward, so in most cases the deep
details are left for you to explore on your own.

The Utilities home page (as shown in Figure 2-21) presents a quick, icon-based menu you can use to
reach the individual utility areas. Clicking any one of these icons will take you directly to the tools page for
that category.

30

CHAPTER 2 * A DEVELOPER’S OVERVIEW

[LR New Tats Gow

Cn VANS0/aper/t Tped500-1005:6181 74307 B446-NO: -

@
OIRACLE Appicason Express L Workshor % ﬂ

Data Workshop Query Builder

Genarate DDL User Interface Defaults

Methods on Tables About Database

Database Monitor

Schema Comparison Recycle Bin

B detabase cbiects gl - $ Showan

Figure 2-21. The SQL Workshop Utilities home page

You've already seen the Query Builder, which gives users the ability to visually create queries.

The Data Workshop provides tools that import and export data in many different formats, including
comma- or tab-separated data, XML data, or spreadsheet data. These tools also help you manage files that
you have loaded into either the text or spreadsheet repository.

The Generate DDL wizard allows you to choose a schema associated with the workspace and then
generates a script that can be used to re-create some or all of the objects with that schema based on your
selection. The generated script doesn’t include any insert statements for the data that resides in the database
objects, but it’s a good way to easily re-create the underlying objects an application might use.

The Methods on Tables wizard generates an Application Programming Interface (API) based on a
specific table or set of tables. For each table selected (up to ten named tables), the generated package
contains a procedure for each of the following actions: Insert, Update, Delete, and Select. The benefit of
using table APIs instead of accessing the table directly is that any required validation logic can be included
once, in the API, and accessed from various alternate interfaces including APEX.

The Object Reports are actually a set of utilities that let you get detailed information about the different
types of objects that live in the “parse as” schema(s) assigned to the workspace. Although most of the reports
have to do with tables, others deal with PL/SQL objects, invalid objects, grants and permissions, and so on.
This is a good place to find details of the objects in your working schema.

The Schema Comparison utility allows you to compare the objects in two separate schemas and create
a difference report. You may choose to compare only certain attributes or all attributes of the objects in the
selected schemas. The limitation here is that both schemas must be assigned to the workspace in order for
the comparison to take place.

User-Interface Defaults allow you to define default display attributes for APEX regions and items. The
utility lets you manage these UI defaults at two different levels: Table Dictionary and Attribute Dictionary. UI
Defaults will be discussed in more detail later.

31

CHAPTER 2 * A DEVELOPER’S OVERVIEW

About Database and Database Monitor are special utilities that require the user running them to
have access to a database login that has been granted the DBA role. The Database Monitor utilities allow
the privileged user to view Sessions, Systems Statistics, Top SQL, and Long Operations reports. The About
Database report shows detailed information about the database instance and the APEX environment.
Depending on the settings the Instance Administrator has chosen, these two utilities may not appear in the

list, because they can be turned off.

When an object is dropped, Oracle doesn’t immediately remove the space associated with the table, but
instead renames the table and places it and its associated storage in the Recycle Bin. The Recycle Bin utility
allows you to view and potentially recover objects that have been dropped from the schemas associated with
a workspace. You may also purge the Recycle Bin, allowing the space to be reclaimed by the Oracle database

for use somewhere else.

Packaged Apps

The Packaged Apps section is where you will install and managed the applications that are bundled with the
APEX distribution. The main page, shown in Figure 2-22, shows the Packaged Apps home page. From here

you can see which applications are installed and can navigate to the three subsections.

BB Pachscea Apes Home * New Tab
€2CH VMS0/apet Ip=475001 6191 743076446 NORP:
ORACLE Appicaton Express Applcation Bulder AL Workshop Team Development Packaged Apcs
Packaged App Gallery Dashboard Packaged App Administrat
Instaliad Packaged Apps N Feanxred Packaged Appicatons

Sampile Database Appication
u = n Live F’o_ll

This application allows you 1o

| conduct a simple poll or quiz.
Resufts of the poll or quiz can be
displayed in real time. You can
usa fve poll durin..,

Figure 2-22. The Packaged Apps home page

32

CHAPTER 2 * A DEVELOPER’S OVERVIEW

Packaged App Gallery

The Packaged App Gallery presents all of the applications that come bundled with the APEX distribution.
There are 35 separate packaged apps that can belong to several different categories, including Software
Development, Tracking, Team Productivity, Marketing, Knowledge Management, IT Management, Project
Management, Sample Application and Sample Websheet.

Clicking on the icon of an application takes you to a detailed information page for that application.
Here, you'll be able to see a screenshot of the application, read its full description, and see version
information, as seen in Figure 2-23.

B Pachages Appication © Doug
s CH VTS0 e T4 TS081 6101 T4397B448--81-PR1_I0,PA1_APP TYPE:7240, DATABASE o M =
ORACLE Apsicaton Exgrass . (]
r) Checklist Manager
VI i
T ———————

Figure 2-23. The Checklist Manager Packaged Apps information page

CHAPTER 2 © A DEVELOPER’S OVERVIEW

Clicking the Install Application button will step you through the process of installing the selected
application in your current workspace. A pop-up installation wizard will present you with a choice of
authentication method, which normally defaults to Application Express Accounts. Clicking the final Install
Application button in the wizard will install the application and any of its supporting objects, including any
required database objects. Once the installation is complete, you will be taken back to the Application’s
Information page where, as shown in Figure 2-24, you will see the application has been successfully installed
and you will be given the options to manage and run the application.

Checklist Manager

V Installed = {53 Manage m

Figure 2-24. See that the Checklist Manager App has been successfully installed

There are a few things that you should know about Packaged Applications:

e Anyapplication that has “Sample” in the name is there to demonstrate functionality
available in APEX and therefore will be installed in an unlocked state by default. This
means that developers will be able to edit the application and see how the APEX
team developed the app.

e Applications that do not have “Sample” in the name are provided as production
ready and will be installed in a locked state that does not allow any editing until the
app is specifically unlocked. This can be done via the Manage button, as shown in
Figure 2-24. Any of these applications that are installed and remain locked are fully
supported by Oracle in a production environment. These locked applications can
also be upgraded to more current versions that may come with future versions of
APEX. The moment you unlock them, all support from Oracle ceases, upgradeability
expires, and there is no way to re-lock the application.

e All Packaged Applications are installed into the workspace’s default “parse as”
schema. Currently, there is no direct way to install them in a secondary “parse as”
schema without first unlocking and exporting the application, thereby voiding any
support.

Even though the Sample apps were written as learning aids, there is a lot to be learned from many of the
production-ready applications as well. I heartily suggest your first act after finishing this book is take a look
at the inner workings of some of the Packaged Applications.

Packaged App Dashboard

As shown in Figure 2-25, the dashboard page presents an overview of the utilization of Packaged
Applications in the current workspace. You're presented with the total number of available apps, the number
installed, and whether there are any applications that can be upgraded. You can also see who has installed
the apps and how frequently they are used.

34

CHAPTER 2 * A DEVELOPER’S OVERVIEW

®0® Pouroeo Bromrairation x Doug

- cCH VIS0 apen TTp=4T50:2-6191 7439754461 o O =
ORACLE Appicason Express Packaged Ao A (]
Packaged Applications Installed Not Instastec Available To Upgrade

Figure 2-25. The Packaged Apps Dashboard

Packaged App Administration

The Packaged App Administration page provides a list of administration tasks specifically related to
Packaged Applications installed in the current workspace. If you are logged in as a developer, you'll only see
options relating to managing Interactive Report settings and Activity reports. However, when logged in as a
workspace administrator, you'll see a section called Manage Services that shows a small subsection of what is
available to you in the full Administration section.

Administration and Team Development

The last two functional areas of the UI, Administration and Team Development, are complex enough to truly
deserve their own chapters. Therefore, we refer you to the chapters that cover these areas in depth. Chapter
10 covers deploying applications, Chapter 14 is about managing workspaces, and Chapter 15 goes over Team
Development.

You will dip into administrative tasks throughout this book, so if you want to have a full understanding
of administration before you start, you should take a detour and read these chapters now to get a good
foundation. However, if you're prepared to learn on the fly, go to the next chapter, where you start the real
programming.

35

http://dx.doi.org/10.1007/978-1-4842-0466-5_10
http://dx.doi.org/10.1007/978-1-4842-0466-5_14
http://dx.doi.org/10.1007/978-1-4842-0466-5_15

CHAPTER 2 © A DEVELOPER’S OVERVIEW

Summary

The architecture of APEX may seem a bit daunting at first, but once you actually start working with it, things
will begin to fall into place, and you’ll understand more and more about how everything fits together. If

you take away only one thing from this chapter, let it be that a workspace is essentially your development
sandbox. Everything you do happens in the context of a workspace. Everything else—from a development
standpoint—is much like any other development environment. Are you building a new application? Then it
needs to be created in a workspace. Do you need access to a schema to build that app? Then it needs to be
assigned to your workspace. You get the picture. Now, on to the fun!

36

CHAPTER 3

|dentifying the Problem and
Designing the Solution

Every computer system is (or at least should be) the result of solving some type of problem. Although
“Hello World” apps are great, I firmly believe that the best way to learn any technology is to apply it to a real
problem and see how things actually work.

I adhere to that principle throughout this book. This chapter will discuss a very common problem in
most organizations that can be solved technically. You will also look at some of the elements you need to
consider when designing web-based systems in general and with APEX specifically.

Identifying System Requirements

Almost every company, no matter the size, will at some point need to implement some sort of help desk.
Whether it’s an internal one to track employee questions and problems or an external one to track client
issues with commercial software or hardware, the basics of a help-desk system are fairly standard.

Most help-desk systems are driven by the notion of a trouble ticket or simply a ticket. This term is left
over from the days before computers: most problems were reported over the phone, and troubleshooters
used a physical paper ticket to log a call. The information contained on that paper ticket included a
description of the problem, the name of the person having the problem, when the problem was logged, and
so on. Then, throughout the process of troubleshooting and, hopefully, solving the problem, the engineers
wrote down each step of the process and included any documentation of the problem they gathered along
the way. Today, it would be very surprising to see a help-desk system that wasn’t computerized, even if it's
only a spreadsheet of issues with notes and statuses.

In this chapter, you will attack the help-desk system with APEX. Before you dive in, you need to clearly
understand the problems you're trying to solve. If nothing else, you need to review the current system.

Never a Clean Slate

Almost no computer system written today starts from scratch. There is almost always something in place
already, even if it’s just some loose guidelines or ideas.

For this example, let’s say your company has a very basic system in place, but it’s no longer meeting
the needs of your growing user community. Your goal is to create a new system that will make the logging of
issues and their solutions much easier for everyone involved; however, to do that, you must understand the
needs of the users and the functionality of the system that is currently in place.

37

CHAPTER 3 ' IDENTIFYING THE PROBLEM AND DESIGNING THE SOLUTION

A Broken System

In general, the users of help-desk systems can be categorized into two groups: people who log problems
(end users) and people who help solve the problems (technicians). Depending on which user community
you fall into, it’s likely you have different needs, but, overall, the system should help the end users and the
technicians communicate with each other about the problem or issue.

The first step is to understand how your help desk is being managed today and why it’s not working.
Speaking to both the technicians and the end users can provide a huge amount of information, but the
challenge is that this information usually comes in the form of complaints about the current system.

Quizzing the end users reveals that their main complaint is that they never know the status of the
problems they’ve logged. They can go days, sometimes weeks, without communication from the technicians,
and in the eyes of the users, no communication means no one is working on their problem. Another user
complaint is that the help-desk technicians often don’t know how to contact them to ask further questions
or communicate progress.

On the other end of the issue, the technicians are overloaded. Ticket information is kept in an Excel
spreadsheet. Originally, the help desk was only one person, but now there are several technicians working
independently. While performing their daily duties, each needs to update the spreadsheet with information
regarding the tickets assigned to them. The increasing number of people accessing a single spreadsheet
causes problems, because only one person can open and update the spreadsheet at any given time. The
technicians are also tired of constantly being called by users wanting an update on the status of their issues.

It's obvious that the system is broken. Neither the users nor the technicians are happy about the
situation. It’s your job to take the information you've gleaned from these conversations and design
something that will address the needs of both user communities.

How Do You Fix Things?

With the information you've gathered so far, you can now define some loose requirements and break them
down by user type to give you a much clearer understanding of what each community needs. Then, from those
requirements, you can begin to think about the database design that you'll need to create in support of them.

Defining the Requirements

You can look at requirements from two perspectives. End users have one set of requirements and technicians
another. Some requirements overlap between the two groups. Others are unique to one group or the other.
End users should be able to

e create a new ticket outlining their problem
e see the status and progress of tickets
Technicians should be able to
e easilyidentify and view new tickets
e easily identify which tickets are directly assigned to them
e search existing tickets
e create new tickets on behalf of an end user
e assign tickets to other technicians
e add details (comments, information, and attachments) to tickets

e update the status of a ticket

38

CHAPTER 3 " IDENTIFYING THE PROBLEM AND DESIGNING THE SOLUTION

Although you could go a lot further, these requirements form the basis of a pretty complete help-desk
system. You can always add functionality to it later when you have a better understanding of what else the
users and the company might need.

Extrapolating to a Database Design

Having stated the requirements, you can begin to extrapolate the database objects you need to create to
store the data. If you're new to database design, here’s a quick trick to help you identify the entities for which
you need to build tables: go back through your requirements and look for concrete nouns that represent

the highest-level objects you need to track. As you find these nouns, try to identify if they’re actually at the
highest level or if they’re merely attributes of something bigger.

If you follow the described process with your brief requirement specification, the nouns USER and
TICKET jump out as being the two main things you want to track. It’s tempting to split users into two
different sets—technicians and end users—but the type of user is merely an attribute of a user.

An object that is a little harder to identify is TICKET DETAIL. It's completely valid to think that this
would merely be an attribute of a TICKET; however, the clue comes in the fact that you can’t concretely
identify how many TICKET DETAIL entries there will be for any given TICKET. The fact that the number is
unknown indicates that you should create a table that is a child of the TICKET entity called TICKET DETAIL.
This way, you can enter as many detail records as you need.

So, you've identified three major entities: USERs, TICKETs, and TICKET DETAILs. You now need to think
about the attributes of each of these entities and what type of data they will hold. Searching back through
the statement of requirements, talking to the technicians about what they track today, and thinking about
what types of things you'd want to be able to track during the process of solving a problem, you can identify a
number of attributes about your objects. Tables 3-1 through 3-3 show these attributes.

Table 3-1. USER Attributes

Attribute Name Type of Data Comment

User ID Number A unique ID for each user

User Name Text Alogin ID for each user

Password Text The password used to log in to the system

Table 3-2. TICKET Attributes

Attribute Name Type of Data Comment

Ticket ID Number A unique way to identify the ticket

Subject Text A brief one-line statement of the problem

Descr Text A detailed description of the problem

Status Text The status of the ticket during processing (OPEN, PENDING,
CLOSED, and so on)

Created By Text The user who logged the ticket

Created On Date The date the user created the ticket

Closed On Date The date the ticket was closed

Assigned To Text The technician who is assigned to work on the ticket

39

CHAPTER 3 ' IDENTIFYING THE PROBLEM AND DESIGNING THE SOLUTION

Table 3-3. TICKET DETAIL Attributes

Attribute Name Type of Data Comment

Ticket Details ID Number A unique way to identify this detail entry

Ticket ID Number Which ticket this detail is linked to

Details Text A text description of any details entered by the technician
Created By Text The user who logged the ticket

Created On Date The date the user created the ticket

Although it’s good to try to be as detailed as possible as early as you can, you don’t have to be perfect
here. You can always go back and alter or expand the data you wish to capture as you identify other
potential attributes.

System Design with APEX in Mind

Because APEX not only resides in, but is also built on, the Oracle database, you would think that designing
database objects for APEX would be the same as designing for any other system that uses Oracle as a data
store—and in some aspects you would be right. However, there are definitely some things you need to
understand when designing for an APEX system that will make your life much easier.

Most of what you do with APEX, at least initially, uses a series of wizards. If the database objects are
designed with APEX in mind, the wizards will do far more work for you; therefore, you'll need to do far less
fine tuning manually. The following sections will discuss the most important design considerations and how
they affect what the wizards do for you.

Table Definition and User-Interface Defaults

One such area you will see in more detail later is that of user-interface defaults (UI Defaults). It’s important
to know that when you use UI Defaults, certain table attributes are translated into default settings used
across APEX. Here are some of the more far-reaching things you can do at the table level to help make

Ul Defaults more useful:

e Placing comments on a table column seeds that item’s UI Default help text with the
text of the comment.

e Marking a column as NOT NULL at the database level triggers a Required flag to be set
in the UI Defaults.

e Date and Timestamp data types are set up to display as Date Pickers on input forms.

e The order in which the columns appear in the table is the default order in which the
UI Defaults will set them to display on a form or report.

e Defining a column as a BLOB sets the form-level UI Defaults to use APEX’s declarative
BLOB functionality.

You will set up and modify UI Defaults in a later chapter so you can see for yourself how design
decisions affect the way they are set up.

40

CHAPTER 3 ' IDENTIFYING THE PROBLEM AND DESIGNING THE SOLUTION

APEX and Primary Keys

APEX is set up to make the best use of sequence-based surrogate primary keys of no more than two columns.
Although you can still use APEX on table structures that use multicolumn natural keys, it’s far easier and you
get much more out of the box if you give APEX what it likes.

I have worked with many systems over the years that implemented multicolumn natural keys, and
I've successfully implemented APEX systems on top of these types of data structures. However, I ended up
hand coding the logic that APEX would have provided for free had the structures used one- or two-column
surrogate keys.

In APEX 4, the ability to use ROWIDs in place of primary keys was introduced to help solve the problem
of multicolumn primary keys. This feature provides a way to bypass the perceived limitation of APEX’s two-
column primary-key limit by using the ROWID as the primary key.

Although using ROWIDs in this manner is technically and syntactically correct, when building an APEX
application from scratch, it’s still considered a best practice to use single-column surrogate primary keys
based on a database sequence (Oracle 11g and below) and assigned by either database triggers or an identity
column (Oracle 12c).

If you take the example of the TICKET table, the ID for a ticket is an arbitrary piece of data used only to
uniquely identify one ticket from another. Therefore, it easily fits into the realm of a surrogate primary key.
Even if the spreadsheet that the help-desk technicians currently use has IDs assigned to the tickets, you can
load those values and start your sequence counting at a point above the highest current TICKET ID. The
same is true for TICKET DETAILS. Even in the USER table, where you have a unique, single-column natural
key (the User Name), it behooves you to implement a surrogate key so as to be able to take advantage of the
built-in APEX code paths.

Business Logic vs. User-Interface Logic

Because it’s primarily written in PL/SQL, APEX takes full advantage of everything that PL/SQL has to offer.
The APEX development team has made thorough use of stored PL/SQL program units for their business
logic, and you can take a very important lesson from them.

Although it’s arguably a valid development method to prototype your business logic by first coding it
as an anonymous PL/SQL block inside of APEX, it’s foolish to leave it there long term. By moving it out into
stored program units, you gain in many different ways.

One very important gain is made in the realm of performance. Anonymous PL/SQL blocks are stored
in the APEX metadata as uncompiled PL/SQL code. Each time they’re required to run, they must first be
extracted from the APEX metadata, parsed, compiled, and then run. This process carries quite an overhead
if the PL/SQL in question is part of a page that gets thousands or even hundreds of thousands of hits a day.
If you move that code into a stored program unit in the database, the retrieval, parse, and compile steps are
all skipped, and the code is run directly.

Another benefit is reusability. If the same logic is used in more than one place, it can simply be called
instead of duplicated in two anonymous blocks. Therefore, any change to the business logic need only
happen in one place. Another reusability benefit might occur if multiple systems (some being non-APEX)
need access to the same business logic. When stored in a PL/SQL program unit, it doesn’t matter whether
the calling system is APEX, .NET, Java, or PHP-they can all use the same logic.

Finally, by moving business-logic code into stored program units, you gain the ability to code, debug,
and test these program units outside of the restrictions of APEX, using your favorite PL/SQL coding tool
instead. However, not all code needs to be moved out into the database. User-interface logic that manages
and manipulates items on the page, such as computations, validations, and processes, is often best kept as
part of the page. Such logic is often so page specific and so small in footprint that the gain from moving it out
to the database isn’t worth the extra management overhead. As a general rule of thumb, logic that controls or
manipulates the Ul is best placed in APEX, and logic that implements business rules or controls the data is
best placed in stored program units in the database.

41

CHAPTER 3 ' IDENTIFYING THE PROBLEM AND DESIGNING THE SOLUTION

Placement of Database Objects

The Oracle database is very flexible, allowing data from multiple schemas to be granted to and queried
by other schemas, even across database links. The APEX wizards have been coded to work best when the
database objects reside in a “parse as” schema assigned directly to the workspace.

The APEX wizards make heavy use of database metadata for the objects in the “parse as” schema.
If you're trying to create applications against synonyms from another schema or across a database link to
another database, in many cases the wizards won’t be functional, because the metadata for these objects is
unavailable. Some features won’t work at all, such as the management of BLOB data across database links.

In general, reports are much easier to deal with when it comes to disparate data, because you can
supply a working query and create a report. Forms, however, become much more difficult, because the
insert, update, and delete logic must be coded manually instead of relying on the APEX-supplied automated
DML processes.

Although it’s not always possible, the best practice is to create the underlying database objects in the
“parse as” schema for the application. This is how you will architect your help-desk system.

Translating Theory to Practice

Now that you have a reasonable understanding of the things you need to think about when designing the
database objects for your system, you can translate your text-based tables into a real schema definition.
Although it’s very easy to take the previously described objects and attributes straight to SQL Workshop
and start entering their definitions, it’s usually a good idea to go through the steps of creating an entity-
relationship diagram (ERD). Often, the action of doing this can bring other design considerations to light.

There are dozens of ways to draw ERDs, from pen and paper to high-end database-design tools.
However, I tend to take the middle ground and use Oracle’s SQL Developer Data Modeler, a robust and free
tool from Oracle.

Figure 3-1 shows the results of using the Data Modeler to create the ERD from the information in the
initial definitions.

TICKETS
P * TICKET_ID NUMEBER
* SUBJECT VARCHARZ (255 BYTE)
DESCR VARCHAR2 (4000 BYTE)
* CREATED_BY NUMBER
* STATUS VARCHAR2 (50) B - — —
* CREATED_ ON DATE |
CLOSED_ON DATE |
F ASSIGNED.TO NUMBER |
3= TICKETS_PK [
| USERS
+ | P * USER_ID NUMEBER
L — — —plU * USER_NAME VARCHAR?2 (255)
[* PASSWORD VARCHAR2 (255 BYTE)
[@ USERS_PK
| & USERS_UN
TICKET_DETAILS
P * TICKET_DETAILS_ID NUMBER
F TICKET_ID NUMBER
DETAILS VARCHARZ (4000 BYTE)
* CREATED_BY NUMBER
CREATED_ON DATE
3> TICKET_DETAILS_PK

Figure 3-1. First draft of database design

42

CHAPTER 3 ' IDENTIFYING THE PROBLEM AND DESIGNING THE SOLUTION

The diagram shows each table having a surrogate primary key that uniquely identifies the records.

As discussed in the previous section, this allows the APEX wizards to work more seamlessly and generate
more-complete objects.

There is a foreign key in place between TICKETS and USERS to identify the person to whom the ticket is
currently assigned. In addition, a unique constraint is placed on the USER_NAME column of the USERS table to
make sure someone doesn'’t accidentally create two users with the same USER_NAME.

Although this isn’t likely to be the final version of the data model, it’s probably complete enough for a
start. Using your ERD tool, you could go ahead and generate the database-object-creation scripts and then
upload and run them through APEX SQL Workshop’s SQL Scripts interface. However, because your data
model is so small, in the next chapter you will use the Object Browser tool to create the objects from scratch.

Summary

Identifying the problems your APEX application is supposed to solve is only half the battle. Good database
design—and designing specifically with APEX in mind—is the key to creating a successful APEX application.
Taking the time to make sure you have a solid foundation means you can take full advantage of everything
APEX gives you so that there is less work to do later.

43

CHAPTER 4

SQL Workshop

Now that you have a graphical representation of what your underlying tables should look like, in the form of
an entity-relationship diagram (ERD), it’s time to dig in and start creating the objects. As mentioned before,
you could use your ERD tool to generate the scripts, but to get used to using the SQL Workshop, here you'll
create these objects from scratch.

Note For this and many of the following chapters, you need to download the code that accompanies the book.
If you haven’t already done so, download the code . zip file from this book’s home page at www.apress.com.
Then unzip it to a directory from which you can retrieve the files easily.

Creating Objects with the Object Browser

SQL Workshop’s Object Browser is somewhat misnamed, because it not only allows you to view database
objects, but also lets you create and edit them. For now, you'll skip the USERS table; you will come back to
itlater in the book. Right now, you'll focus on the TICKETS and TICKET_DETAILS tables. From this point
forward, you'll follow step-by-step instructions interspersed with figures and discussions about what you're
trying to achieve and why you're doing it the way you are. Let’s get started:

1. Login to your APEX workspace. You're presented with the workspace’s Home
page, which, unless you've been doing other work in this workspace, probably
looks a little sparse.

2. Using the tabbed navigation bar across the top of the Home page, pull down the
SQL Workshop submenu by clicking the arrow on the right side of the tab
(see Figure 4-1).

45

http://www.apress.com/

CHAPTER 4 ' SQL WORKSHOP

ORACLE Appication Express Application Builder saL workshop @) Team Deveiopment Packaged Apps

SOL Commands .

SOL Scripts. L]

RESTHI Services.

Figure 4-1. Navigate to the Object Browser

3. Click the Object Browser option.

4. Inthe Object Browser, click the “+” icon (which stands for Create) button in the
upper-right corner and select Table from the drop-down menu.

The Create Table Wizard opens. The first screen (Figure 4-2) allows you to name the table and enter the
details for each of the table’s columns. Using the two arrows in the Move column, you can move the columns
into whatever order you like. This affects the order in which they’re defined and stored in the table. If you
run out of empty rows in which to enter columns, you can click the Add Column button to add a new, empty
column-definition row to the form.

Create Table
©
Columns
* Table Name TICKETS
Preserve Case

Column Name Type Precision Scale Not Null Move
TICKET_ID NUMBER %] A
SUBJECT VARCHAR2 il 255 A
DESCR VARCHAR2 i 4000 AV
STATUS VARCHARZ %] [/] o
CREATED_BY VARCHAR2 i A
CREATED_ON DATE] A~
CLOSED_ON DATE 2] A
ASSIGNED_TO VARCHARZ B8 50 A~
Add Column

Figure 4-2. Defining the table and its columns

46

CHAPTER 4 © SQL WORKSHOP

5. Enter the details for the TICKETS table as indicated in the ERD from the end of
Chapter 3 and in Figure 4-2. Make sure you include the appropriate checks in the
Not Null column of the form. Then click Next.

The next step in the wizard (Figure 4-3) lets you choose how you would like the primary key to be
populated and which column to use as the primary key. The four options for primary key are fairly
self-explanatory, but the two in the middle are probably the most common. You're starting from scratch and
therefore don’t have any existing sequences defined in your database. By selecting “Populate from a new
sequence,” you tell APEX to create a sequence for you and to create a database trigger on the table that will
populate the selected primary-key column with the next value from the sequence, unless the field already
has a value. You're given the chance to name the sequence in this step as well. In this instance, you'll use the
default name given.

Create Table

[O

Primary Key

Table name: TICKETS

Primary Key: No Primary Key
© Populated from a new sequence
Populated from an existing sequence

Not populated
: Primary Key Constraint Name TICKETS_PK
: Primary Key TICKET_ID(NUMBER)
* Sequence Name TICKETS_SEQ

Primary Key

¢ Cancel Next >

Figure 4-3. Defining the table’s primary key

6. Select the Populated from a new sequence radio button. After the screen
changes, select TICKET_ID (NUMBER) for the Primary Key. Leave the
Sequence Name set to its default and click Next.

7. You're not going to create any foreign keys in this table just yet, so leave the
defaults and click Next.

47

http://dx.doi.org/10.1007/978-1-4842-0466-5_3

CHAPTER 4 ' SQL WORKSHOP

The Constraints screen in Figure 4-4 allows you to add either Unique or Check constraints to the table
definition. You add a constraint by defining the constraint in the Add Constraints region and clicking the
Add button to add it to the list. Below the Add Constraints region are two Help regions. Clicking the arrow to
the left of the region title expands the help and shows the columns you defined in the table and examples of
how to code various check constraints.

Create Table

@ @ (] @

Constraints

Constraint Name Type Columnis)/Check

Constraint Type @ Check Unique

Check Condition

»

Key Column(s) TICKET_ID e
SUBJECT C') T
DESCR » T
STATUS
CREATED_BY b +
CREATED_ON
CLOSED_ON < +
ASSINGED_TO

&«
" Name

> Available Columns
> Example Check Constraints

Constraints

Use this page to define constraints for your table. You can create multiple constraints of each type but must Add each
constraint. Only those constraints displayed in the report at the top of the page will be included in the resulting create table
statement.

Check Constraint
A check constraint is a validation check on one or more columns within the table. No value can be inserted or updated in a
table which violates an enabled check constraint.

A unique constraint designates a column or a combination of columns as a unique key. To satisfy a unique constraint, no two rows
in the table can have the same values for the specified columns.

< canee

Figure 4-4. The constraints definition step

48

CHAPTER 4 © SQL WORKSHOP

When you click the Add button, the definition of the constraint is added to the list of constraints at
the top of the page. You can define as many constraints on a given table as is necessary. Once you're done,
simply continue with the wizard.

8. You're not going to create any Unique or Check constraints here, so stick with the
defaults and click Next.

The final step of the Create Table Wizard gives you the chance to confirm your request and, if desired,
review the code that will be executed. If you need to make changes to the table definition, you can use the
buttons at the bottom of the region to navigate back through the wizard steps. To view the code, click the
arrow to the left of the SQL label to expand the region, as shown in Figure 4-5.

Create Table

(] @) © &

Confirm

Schema: APRESS

Table name: TICKETS

&SQL

L4 Cancel Create Table

Figure 4-5. Review the Create Table Wizard's SQL

9. Review the text in the SQL region presented by the Create Table Wizard. Click
Create Table to complete the wizard.

Once you've successfully completed the wizard, you're taken back to the Object Browser, and
the definition of the TICKETS table is displayed. Take a moment to examine the definition of the table.
You should see all the columns that you defined listed. If you click the Constraints tab at the top of the
definition region, you will see a number of different constraints, including the primary-key constraint
on TICKET_ID.

In the upper-left corner of the Object Browser is a select list that defines the object type being browsed.
Use this select list to choose Sequences. You see that APEX created a sequence called TICKETS SEQ that will
be used to fill the TICKET_ID.

49

CHAPTER 4 © SQL WORKSHOP

Once again, use the Object Type select list and choose Triggers. You will see a trigger named BI_TICKETS
(BI stands for “before insert”). Selecting the BI_TICKETS trigger on the left-hand side and then clicking the
Code tab above the trigger details will show the code for the trigger that is using the TICKETS_SEQ sequence
to fill the TICKET_ID if it is null. You should see code similar to the following:

create or replace trigger "BI_TICKETS"
before insert on "TICKETS"
for each row
begin
if :NEW."TICKET_ID" is null then
select "TICKETS SEQ".nextval into :NEW."TICKET ID" from sys.dual;
end if;
end;

Now that you have the TICKETS table defined, let’s go back and create the TICKET_DETAILS table.
This time, you'll create a foreign key to the TICKETS table, as a CASCADE DELETE. This means that if you delete
a ticket, the ticket details will automatically be deleted as well.

10. Start the Create Table Wizard using the Create (+) button.

11. Enter the table name and column definitions based on the ERD and Figure 4-6,
and click Next. Again, make sure you check the appropriate Not Null checkboxes.

Create Table
©
Columns
" Table Name TICKET_DETAILS
Preserve Case
Column Name Type Precision Scale Not Null Move
TICKET_DETAILS_ID NUMBER %] Py
TICKET_ID NUMBER %] ~
DETAILS VARCHAR2 %) 4000 AV
CREATED_BY VARCHARZ %] 50 AV
CREATED_ON DATE <] v
- Select Datatype - B PR
- Select Datatype - ﬂ W
- Select Datatype - ﬂ AN
Add Column

Cancel

Figure 4-6. Defining the TICKET_DETAILS table

50

CHAPTER 4 © SQL WORKSHOP

The next set of steps is purposely a bit more vague than the previous ones. You should be used to using
the Create Table Wizard by now, but if you need a refresher, just look at the previous steps.

12. Choose Populate from a new sequence for the primary key, select
TICKET_DETAILS_ID(NUMBER) as the Primary Key column, and click Next.

13. Add a foreign key between the TICKET _ID in the TICKET _DETAILS table and the
TICKET_IDin the TICKETS table. Make sure the Delete action is set to Cascade
Delete. Your screen should look similar to that in Figure 4-7. Additionally, make
sure you tab out of the References Table field in order to cause APEX to display
the shuttle control that allows you to choose the referenced columns.

Y Add Foreign Key m

Name TICKET_DETAILS fk Disallow Delete
D Cascade Delete
Set Null on Delete

Select Key Column(s) TICKET_DETAILS_ID ¢) TICKET.ID =
DETAILS
CREATED_BY » 1}
CREATED_ON
> 4
€ +
«
References Table TICKETS ~
Referenced Columnis) SUBJECT 1'.2 TICKET_ID T
DESCR
STATUS » T
CREATED_BY
CREATED_ON > 4
CLOSED_ON
ASSINGED_TO < L
&«
Figure 4-7. Defining a cascade-delete foreign key for TICKET_ID
14. Click the Add button to add the new foreign-key constraint.
15. Click Next (see Figure 4-8).
Foreign Keys
Foreign Key Columns Referenced Table Referenced Columns Action
TICKET_DETAILS_FK TICKET_ID TICKETS TICKET_ID cascade X

Figure 4-8. Foreign key as defined in the table wizard

51

CHAPTER 4 © SQL WORKSHOP

16. No constraints are required for this table. Click Next.

17. Review the SQL and click Create Table to complete the wizard.

Loading Data with the Data Workshop Utility

Now that you have your two base tables defined, you can begin working to migrate the old data into your
shiny new data structure. You can use SQL Workshop’s Data Workshop utility to load and unload data from
an Oracle schema in a number of ways, as shown in Figure 4-9. The Data Load option allows you to choose
Text Data, XML Data, and Spreadsheet Data.

Figure 4-9. Data Load and Unload methods provided by the Data Workshop utility

Although three separate options are presented, the Text Data and Spreadsheet Data options actually use
the same Data Load Wizard. There is little or no discernible difference in the actions of the wizard regardless
of which option you select.

The third option (XML Data) allows you to load data that has been exported in Oracle’s proprietary XML
Data Transport format. The format looks like this:

<ROWSET>
<ROW>
<USER_ID>2</USER_ID>
<USER_NAME>DOUG</USER_NAME>
<PASSWORD>A69856770A9AB9CBB0479573FCB3E2A5</PASSWORD>
</ROW>
<ROW>
<USER_ID>3</USER_ID>
<USER_NAME>DAVID</USER_NAME>
<PASSWORD>E2E89134B8AC6E1FFC14139A6FB2C10B</PASSWORD>
</ROW>
</ROWSET>

In your imaginary company, the help-desk technicians have been using Microsoft Excel to track
tickets, so you're going to load the data using the Spreadsheet Data option. A quick glance at the
spreadsheet your technicians use shows you that they have two separate sheets in the Excel workbook:
TICKETS and TICKET DETAILS.

Knowing that you're using preexisting tables that already have primary and foreign keys in place, you
need to be careful about how you load the data. TICKET_DETAILS depend on TICKETS for their parentage, so
you need to load the TICKETS data first. Your spreadsheet should look like that in Figure 4-10.

52

CHAPTER 4 © SQL WORKSHOP

| B | c | D | SN (Y - |
subjoct doscr status assignod_lo created_on closed_on croated_by

1 Cannot log info E-Mas User calied and cannol kog inlo his MS Outiook e-mail Account. OPEN sCoTtT 1-Jan-07 FJan-07 PAUL

2 PC will not um on The user's PC will nol tum on whon I power butlon s pressed. CLOSED DAN 1-Jan-07 RINGO

3 Nood more memory User needs mofe memory installed OPEN DOUG 1-Jan-07 GECRGE

4 MSIE Crashed 4 tirmes MSIE keeps on crashing for any sile CLOSED SCOTT 1-Jan-07 JOHN

5 Neod to install SP2 5P2 Upgrade needed in omder 1o boe compliant OPEN TIM 1-Jan-07 ALEX

& Network drive not beng mapped X: drive nol being mapped Lo \corpishany OPEN T | 1-Jan07 GEDDY

T BS0D afer rebooting Blue Screen of Doath every Ume systom is rebooted OPEN DOUG 2-Jan0T NEAL

B Wirgloss signal nol strong enough Wi-Fi signal not as strong as il was last week CLOSED SCOTT 2-Jan-0T FJan-07 JOHN

91 think | have a virus Something is nol right - PC is slow OPEN DAN 2-Jan07 ROBERT
10 Virus Defintions Dates Messige stabng that virus updales are Neeced koeps Appearing CLOSED SCOTT 2-Jane0T JOHN
11 Funny smell comng from PC There s an odd odor emanating from my PC... OPEN A 3Jan-07 JIMMY
12 Accdentally deleled Q2 ppd File Q2.pot placed in Recyche Bin; bin empbed OPEN DAN 3-Jan-07 EDDIE
13 Several cead pals on scroen There are al leas! 4 dead piels on he display PENDING DOUG 3-Jan-07 ALEX
14 Smariphone will not sync with Ouliook Meolorola Q doos not sync with Outiook contacts and calondar ovenlts OPEN SCOTT 3-Jan-07 MICHAEL
15 Getting Out of Memory errors Same Out of Memary error occurs whon Office stans PENDING DAN 3-Jan-0T DAVID
16 VPN Clent Install Issues Cannot install VPN cliond - instalior emors oul cach tme OPEN DOUG 4-Jan-07 JACKIE
17 Mouse is not working Mouse doos nol move the pointer anymore OPEN ™ A-Jan-07 o
18 Speakers are 100 soft Cannot get good quality of sound from buill-in speakers OPEN SCOTT 4-Jan0T JERMAINE
19 Keyboard busted None of the keys work (| had 10 use someont eises PC to enter this) PENDING DAN S-Jan-OT MICHAEL
20 Disk is Ful No mMore 5paCe BrTor KOO COMNg up OPEN DOUG S-Jan-07 MARLON

Figure 4-10. Spreadsheet data from the TICKETS tab of your Excel workbook

Once you have the TICKETS data in the clipboard, you can switch back to APEX and use the Data
Load Wizard to insert this data into your TICKETS table. Here are the steps to follow to load data from the
spreadsheet into the database:

1.

Locate the helpdesk_spreadsheet.x1s file where you downloaded the
supporting files for this book, and open it with Microsoft Excel. Navigate to the
TICKETS tab. Notice that you have a row for each ticket and a header row that
contains the column headings for each of the columns.

Select all the data, including the column headings, and copy it to the clipboard.
Be cautious not to accidentally select any rows that don’t have data in them,
because that may cause phantom rows or errors in the Data Load Wizard.

Switch back to your web browser, and, using the pull-down menu on the SQL
Workshop tab, select Data Workshop under the Utilities section.

In the Data Load region, click Spreadsheet Data. You should see the Load Data
dialog shown in Figure 4-11.

Load Data - Target and Method X
o

Target and Method

Cancel

Load To: @ Existing table

New table

Load From Upload file {comma separated or tab delimited)

© Copy and paste

Figure 4-11. Preparing to copy and paste the spreadsheet data and load it into the existing TICKETS table

53

CHAPTER 4 © SQL WORKSHOP

5. Inthe wizard, select Existing table for Load To and Copy and paste for Load
From, and click Next.

6. Selectyour “parse as” schema from the Table Owner select list. This is the same
schema in which you created your tables in the Object Browser.

7. Select TICKETS for the Table Name, as shown in Figure 4-12, and click Next.
This is the table into which you’ll load the TICKETS data.

Load Data - Table Owner and Name x
®

Table Owner and Name
e database schema and name of the table you would like load data into
* Table Owner APRESS

* Table Name | TICKETS

< Cance! Next >

Figure 4-12. Enter the name of the table into which you're going to load the data

8. Paste the data that you copied to the clipboard in step 2 into the Data text area.
Change the Separator from a comma to \t, which stands for Tab Delimited.
Now ensure that the First row contains column names box is checked, as
shown in Figure 4-13. Click Next. (You may have to scroll within the dialog to
see all the options.)

54

CHAPTER 4

Load Data - Data x
Data
Copy the data you want to import from a spreadsheet program, such as Microsoft Excel, and paste it into the Data field
* Data
11 Funny smeil coming from PC There is an odd odor emanating from my PC..: 0I5EN TTIM 3-Jan-07 JIMMY

12
13
14
o7
15
16
17
18
19

Accidentally deleted Q2.ppt File Q2.ppt placed in Recycle Bin; bin emptied OPEN DAN3-Jan-07 EDDIE

Several dead pixeis on screen There are at least 4 dead pixels on the display ~ PENDINGDOUG ~ 3-Jan-07 ALEX

Smartphone will not sync with Outlook Meotorola Q does not sync with Outlook contacts and calendar eventsOPEN SCOTT 3-Jan-
MICHAEL

Getting Out of Memory emrors Same Out of Memory error occurs when Office starts PENDINGDAN 3-Jan-07 DAVID

VPN Client Install Issues Cannot install VPN client - installer errors out each time OPEN DOUG 4-Jan-07 JACKIE

Mouse is not working Mouse does not move the pointer anymore OPEN TIM 4-Jan-07 TITO

Speakers are too soft Cannot get good quality of sound from built-in speakers OPEN SCOTT 4-Jan-07 JERMAINE

Keyboard busted None of the keys work (| had to use someone elses PC to enter this) PENDINGDAN 5-Jan-07 MICHAEL

' Separator

Enclosed By

First row contains column names.

<

Figure 4-13. Pasting the spreadsheet data into the Data text box

SQL WORKSHOP

When you click Next, APEX parses the data you've pasted in and does its best to match the column
names in the first row of the spreadsheet data to the column names of the table into which you're loading
the data. On the next screen, you're presented with column mapping so you can check its accuracy and, if
necessary, make alterations and corrections.

APEX is very good about matching column names as defined in the spreadsheet with those that have
the same name in the table. However, if the names differ, it doesn’t try to guess but instead leaves the
mapping to you.

If you scroll to the right, you should see that APEX has matched all the column names from the
spreadsheet correctly to the table columns. If, for some reason, the mappings aren’t right, you can adjust
them using the drop-downs shown in Figure 4-14.

55

CHAPTER 4 © SQL WORKSHOP

Load Data x
9 L] @ @
Column Mapping
Match the database min names with columns in the data. To upload data 1o the selected table ck Load Data
Schema: APRESS
Tabie Name TICKETS
act Yes or No. An asterigk (') indicates a required column. Use SOIL Winrkennn te madifu tahla atiribytes such as changing the colur

%
TICKET_ID - number *
SUBJECT - varchar{255)

Column Names TICKET_ID - Aumber * E SUBJECT - varehar2{255) * g z STATUS - varchar2(20] *
STATUS - varchar2(20)
CREATED_BY - varchar2(50)

i CREATED_ON - date *
CLOSED_ON - date

Upload ves @ ves B ASSIGNED_TO - varchar2(50) ves B

Bevins 1 1 Pannat b inin ELball loar mallat and Aannat Lus e his LIS Metlank somall Anssnvt noEM

Figure 4-14. Manually mapping the data columns to the table

9. When you're sure all the mappings are correct, click the Load Data button to
load the data into the TICKETS table.

After the data is loaded, you're presented the Spreadsheet Repository screen shown in Figure 4-15. That
screen shows that twenty rows were loaded into the database and zero errors occurred during loading.

Spreadsheet data load detail(s) deleted.

Show | My Import Files -4 Set
Details Imported By Imported On ‘:;L Type Schema Table Succeeded Failed
[5 ADMIN 9 seconds ago Spreadsheet Import APRESS TICKETS 20 0

Figure 4-15. Data has been loaded into the TICKETS table

If you navigate to the Object Browser, select the TICKETS table, and look at the data in that table, you can
see that the records that were in your spreadsheet have been loaded into the database. To finish the job, you

need to load the data for TICKET_DETAILS. Here’s what to do:

10. Navigate to the Data Workshop, click the Spreadsheet Data link in the Data Load
region, and click Next.

11. Inthe wizard, select Existing Table for Load To and Copy and paste for Load
From, and click Next.

12. Select your “parse as” schema from the Table Owner select list. This is the same
schema in which you created your tables in the Object Browser.

56

CHAPTER 4 " SQL WORKSHOP

13. Select TICKET_DETAILS for the Table Name, and click Next.

14. In Microsoft Excel, navigate to the TICKET_DETAILS tab and copy all the data,
including the column headings, in that spreadsheet to the clipboard.

15. Inyour browser, paste the data you copied to the clipboard into the Data text
area, change the Separator to \t, and ensure that First row contains column
names is checked, and click Next.

16. Review the mappings made by APEX in the Define Column Mapping region. It
should have mapped everything correctly. Click Load Data to complete the data
load. The summary should say that twenty-two records were loaded into the
TICKET _DETAILS table with zero errors.

You now have both of the main tables created and loaded with the legacy data. This alone is enough to
start developing an application, but you're not quite ready to begin yet.

Creating a Lookup Table

Have a look at the definitions and data of the tables you just created. They're basically mirror images of the
spreadsheet tabs the technicians were using before. If you examine the data closely, you will notice that
there are still some areas where the data isn’t quite normalized as well as it could be.

For instance, in the TICKETS table, the STATUS column has only three values—OPEN, CLOSED, and
PENDING—which repeat over and over. The data values in this column indicate that it’s a perfect candidate
for creating a lookup table. Although it’s tempting to create the table manually with the Create Table
Wizard and then manually migrate the data, APEX can create a lookup table—complete with its own
sequence, trigger, and foreign key—and modify the original table so it points to the new lookup table, all
without you writing a line of code. Here’s how:

1. Navigate to the Object Browser and select the TICKETS table in the Object List
on the left side of the screen. You should see results similar to those shown
in Figure 4-16.

57

CHAPTER 4 © SQL WORKSHOP

ORACLE Applcation Express A h SOL Workshoy 0 To P 1 A % e

Table Data indexes Model Constraints Grants Stabistics UlDefaults Triggers Dependencies SOL

@s

Column Name Data Type Nullabile Detault Primary Key

Figure 4-16. Clicking the Create Lookup Table button starts the Create Lookup Table Wizard

2. Make sure the Table tab is selected.

3. Below the tab bar is a set of button-like links. Click the Create Lookup Table
button, as shown by the mouse arrow in Figure 4-16; it starts the Create Lookup
Table Wizard.

The first step of the Create Lookup Table Wizard (Figure 4-17) gives you the option to show either
only VARCHAR column types or all column types. It defaults to VARCHAR because that’s most likely to be the
candidate for lookup tables. Looking at the columns presented in the wizard, you will see that one of the
VARCHAR columns is your STATUS column.

58

CHAPTER 4

Create Lookup Table

Schema: APRESS
Table Name: TICKETS

Show: All Column Types
© VARCHAR Column Types

* Column SUBJECT - varchar2
DESCR - varchar2
© STATUS - varchar2
CREATED_BY - varchar2
ASSIGNED_TO - varchar2

Canot m

Figure 4-17. Selecting the STATUS column as the source of your lookup table

4. Select STATUS as the column from which you want to create the lookup table,
and click Next.

5. The next step allows you to name your lookup table and the sequence that
isrelated to it. APEX has chosen a reasonable name for the new table and
sequence, so take the defaults and click Next.

6. The final screen of the wizard (Figure 4-18) provides you with information about
the choices made and the action that is about to be performed. It’s easy to miss the
SQL syntax link just below the wizard region. Click the SQL link to show the SQL.

Create Lookup Table
s request, creates a new table and adjusts your current table str
Schema: APRESS
Lookup table: STATUS_LOOKUP
Table: TICKETS
Lookup table primary key: STATUS_ID
Lookup based on Column: STATUS

Lookup table sequence: STATUS LOOKUP_SEQ

< Cance Create Lookup Table

> SQL
k

Figure 4-18. Clicking the SQL syntax link shows the SQL about to be executed

SQL WORKSHOP

59

CHAPTER 4 © SQL WORKSHOP

Examining the SQL shows the steps that will be taken to create the new lookup table, associated
sequence, and trigger; insert the data into the table; and update the data in the originating table so that it
references your new lookup table. That'’s quite a lot of work saved on your part.

7. Click Create Lookup Table to complete the wizard. You're taken back to
the Object Browser. The STATUS_LOOKUP table is highlighted and its details
are shown.

Use the Object Browser to examine the objects that the wizard created.

Loading and Running SQL Scripts

The SQL Scripts tool of SQL Workshop allows you to create, upload, manage, and run SQL scripts. These
scripts are similar to SQL*PLUS scripts in many ways. However, if you use scripts written for SQL*PLUS,
APEX ignores any SQL*PLUS-specific syntax.

Once a script is created or loaded, it’s moved into the script repository, where it remains until you
decide to remove it. From the script repository, you can decide to edit or run the script. When you run a
script, APEX stores the results for you to view later. For example, you can come back to review the results for
possible error messages.

You're now going to load and run a script that will modify the underlying data just a bit. Here’s why: In
the real world, the spreadsheet you received from the help-desk team would have current dates and data in
it; however, the ticket dates in the spreadsheet that is downloaded with the . zip file accompanying this book
very likely aren’t current. This would cause you to have to search back in history for the tickets if you were
searching by date. This script will update these dates so they’re recent.

Another thing you need to take into consideration is that you loaded a bunch of data into your tables that
already had IDs assigned to them. Because the IDs were loaded with the data, you didn’t use your database
sequences. Therefore, your sequences are out of synch with the data. You need to drop and re-create your
sequences so the next sequence number is greater than the largest ID used in the associated table.

You're also going to alter the Before Insert trigger that was automatically created on the TICKETS table so
that it automatically fills in the CREATED_ON column. You'll also create a couple of database views that will be
used later to retrieve data formatted for some of the specific charts and calendars you're going to create.

Finally, you'll create a function that, when passed a status name such as OPEN, passes back the ID for
that status. This function is used in a number of places, because you can’t guarantee you know the ID value
of a given status. Therefore, this function is the only safe way to get the associated ID for a given status.

When you're in any of the SQL Workshop tools, you can use the pull-down menu of the SQL Workshop
tab as a quick way to navigate to each of the other tools. Figure 4-19 shows this menu and highlights the SQL
Scripts option.

60

CHAPTER 4 © SQL WORKSHOP

Application Builder SQL Workshop ° Team Development

Object Browser

SQL Commands

B :

Utilities >

Go

oo
oo

RESTful Services

Figure 4-19. Using the SQL Workshop menu to navigate to the underlying tools

Here’s what to do to run the script that will update your schema objects appropriately:
1. Navigate to the SQL Scripts tool using SQL Workshop menu.
Click the Upload button in the upper-right section of the screen.

Click Browse or Choose File buttons to search for the SQL file to upload.

Eal A

In the pop-up file-finder window, locate and select the ch4_schema_changes.sql
file and click Upload. You don’t need to give the script a name; it defaults to the
name of the script as it appears at the OS level.

Once the file has been uploaded, you're presented with a SQL Scripts report showing the script that
you just uploaded. From this point, you can either edit or run the script. If you want to see what the script
contains, feel free to edit it. You can run the script from the edit screen as well.

5. Run the script by clicking either the Run button (if you're editing the script) or
the Run icon (if you're still viewing the SQL Scripts report).

6. Asshown in Figure 4-20, you're asked to make a selection between Run in
Background and Run Now. Select Run Now.

61

CHAPTER 4 © SQL WORKSHOP

Run Script

.

chd_schma_changes.sql
on 05/06/2015 02:21:40 PM by ADMIN
on 05/06/2015 02:21:40 PM by ADMIN
17

3,087

Cancel Run Now Run in Background

Figure 4-20. Choose whether to Run in Background or Run Now

The script is run, and you're immediately taken to the Manage Script Results page. You'll most likely
see that your script status is COMPLETED.

7. Click the View Results icon at the far-right end of the report row to see the results
of the script. Figure 4-21 shows where to click.

Go Actions v Delate Checked

Script Run By Started Finished Elapsed Status Security Group Id Statements Bytes View Results

hd_schma_changes.sq ADMIN Now 050672015 011 Compieted 2642313158820002 17 of 17 o

®

Figure 4-21. Click the View Results icon to view the results of running the script

The View Results page allows you to see what happened when the script was run. The default view
shows an overview by displaying the first 50 or so characters of each statement along with some brief
feedback and the number of rows affected by the statement. Figure 4-22 shows the results from a run of
the script.

62

CHAPTER 4 © SQL WORKSHOP

SOL Seripts ~ Results

Script: chd4_schma_changes.sql Status: Complete
Edit Script
View: Detal) Summary Rows 15 ¢ Go
Number T Elapsed Statement Feedback Rows
1 0.0 update tickets sal created_on = to_date(fto_char{sysdate 20 row(s) updated. 20
2 0.00 update tickets set ciosed_on = to_date(lto_char(sysdate - 2 row(s) updated. 2
3 0.00 update ticket_detalis set created_on = to_data{fto_charfs 22 row(s) updated. 2

Figure 4-22. The summary view of the script results

You can, however, get more detailed feedback by changing the report view to Detail. Doing so gives
you far more insight, especially if you have a script that had errors during execution. Figure 4-23 shows a
detailed view.

SOL Seripts ~ Results

Script: chd_schma_changes.sql Status: Complete
Edit Script
View. @ Detail Summary Show: [Statement [Results [Feedback Go
update tickets set created_on = to_date((to_char(sysdate - rownum, 'DD-MON-YY') |1 " 12:00PM"), 'DD-MON-YY HH:MIPM')
20 row(s) updated. 0.01 seconds
update tickets set closed_on = to_date((to_char(sysdate - rownum, 'DD-MON-YY') |1 * 12:00PM'), 'DD-MON-YY HH:MIPM') where closed_on

is not null

9 el samcbabod AN fammns

Figure 4-23. The detailed view of the script results

In either view, you can quickly see whether the script encountered any errors by scrolling to the
bottom of the page and looking at the report footer, which is where the report displays the total number of
statements processed, the number of those that were successful, and the number that generated errors.
Figure 4-24 shows the number of statements processed from a run of the script.

Run By ADMIN
Parsing Schema APRESS
Script Started Wednesday, May 6, 2015

3 minutes ago
Elapsed time 0.11 seconds
Statements Processed 17
Successful 17

With Errors 0

Figure 4-24. In the footer of either report is the success summary for the script

63

CHAPTER 4 © SQL WORKSHOP

User Interface Defaults

Before you start to write your application, one last thing you can do that will make your life easier along
the way is to create some User Interface (UI) Defaults. This, in my opinion, is one of the most underutilized
features of APEX.

Understanding User Interface Defaults

UI Defaults allow you to customize the default display attributes for tables, views, and their columns. They
can be used to control many properties, including alignment, searchability, display sequence, what type of
item is created for a column, default values, and many more.

For instance, when you're creating a new form or report via a wizard (which is most of the time), APEX
asks if you wish to use UI Defaults. If you select “Yes” and defaults are available, APEX applies them to the
appropriate regions or items based on the tables or columns for which the attributes are defined. UI Defaults
are divided into two categories: Attribute Dictionary and Table Dictionary.

The Attribute Dictionary allows you to create more-generic UI Defaults based on attribute names.
Consider this a more macro-level definition.

Let’s say you create an attribute-level default for any attribute named PHONE_NUMBER. If a column
named PHONE_NUMBER appeared in a table and didn’t have a Table Dictionary default assigned, the Attribute
Dictionary default would take effect.

Attribute Dictionary definitions can also be assigned synonyms, allowing more than one attribute
name to share the same actual definition. So, for instance, you could create the synonyms PHONE, TELEPHONE,
PHONENUMBER, and so on for the original PHONE_NUMBER definition. If the wizard ran into a column with any of
those names, it would apply the PHONE_NUMBER defaults to the APEX item that is created.

The Table Dictionary allows you to define defaults for a specific table or column, and those defaults are
only applied to APEX regions or items created for those specific items.

Here are some things to note about UI Defaults:

e Table Dictionary defaults always override Attribute Dictionary defaults.

e When an item is created using UI Defaults, no relationship is established with the UI
Default. Therefore, if you later change the definition of the UI Default, the changes
aren’t propagated to previously created items.

e Items created before UI Defaults have been established don’t inherit properties of
the UI Default.

e Developers can choose not to use Ul Defaults, and even if they're used, can override
them after the component is created.

Having said that, UI Defaults do help ensure consistency across your application and make your job
much easier as a developer.

Defining UI Defaults for Tables

UI Defaults can be managed either from SQL Workshop’s Object Browser or from SQL Workshop’s Utilities
page. Here’s what to do:

1. Navigate to SQL Workshop'’s UI Defaults page via the drop-down menu on the
SQL Workshop tab and select Utilities; then, choose User Interface Defaults
from the drop-down menu.

64

CHAPTER 4 © SQL WORKSHOP

You're taken to the UI Defaults dashboard, where things likely look pretty sparse. This is because you
haven’t actually created any UI Defaults yet. The first step in creating UI Defaults is to synchronize the Table
Dictionary with the database so it knows what tables are in your schema.

2. Click the Table Dictionary tab along the top of the page, and then click the
Synchronize button on the screen that appears.

This initiates the Synchronization Wizard. This wizard shows you the number of tables with defaults
defined and the number without. In this case, you should have zero objects with defaults and six
objects without.

3. Click the Synchronize Defaults button to begin the synchronization with the
database. This may take a little time.

Once the Table Dictionary is synchronized with the definitions in the database, you're presented with
the report seen in Figure 4-25, which shows each table that now has base UI Defaults. If you have other
tables in your schema, they also appear in this report.

Object Name Type Defaults Exist

Figure 4-25. List of objects with UI Defaults defined

You can now view or edit the UI Defaults for each of these tables. Start by viewing the UI Defaults
for the TICKETS table:

4. Click the TICKETS link in the report. You should see the results shown in
Figure 4-26.

Go
Column Name Sequence Label Column Group Alignment Display In Report Display In Form Required Help Length

TID 1 Ticketld o

Rig
Subject Left v v
3 Deser Laft
Lett v v
Left v
(Left v v
7 Lat v
8 R v

Figure 4-26. The table and column Ul Defaults overview

65

CHAPTER 4 © SQL WORKSHOP

On the page in Figure 4-26 you can see an overview of the UI Defaults for the TICKETS table. In the
upper portion of the report are the table-level definitions, including what the Form and Report regions
based on this table will be called. In the lower portion is a list of the table’s columns, the labels that will be
used, how they will be aligned when used in a report, whether they will be displayed in a report or a form,
whether their REQUIRED attribute will be set in a form, and whether they have any help text.

Next, edit both the table-level and column-level attributes:

5. Click the Edit Table Defaults button in the upper-right portion of the report. This
allows you to edit how Form and Report regions based on this table are named.

6. EnterManage Tickets for the Form Region Title, leave the Report Region Title
asitis, and click Apply Changes.

Clicking any of the column names takes you to a page that allows you to set UI Defaults for that specific
column. As you peruse the column UI Defaults, notice that several things have been set for you, including
the REQUIRED attribute. When APEX synchronized with the database, it saw that certain fields were marked
as NOT NULL at the database level and translated those constraints into UI Defaults for you.

APEX also makes some decisions based on the column’s data type, such as how to align the column
when it’s displayed in a report. Use the following information to alter the UI Defaults for the indicated
columns by clicking the link in the column name:

Column: SUBJECT

Label: Subject

Help Text: A brief title for the issue.
Column: DESCR

Label: Description

Help Text: Describes the ticket in detail. Please be as complete as you can.
Resizable: YES

Width: 50

Height: 5

Column: STATUS_ID

Label: Status

If you wish, you can go ahead and set the UI Defaults for any of the other columns and/or tables. Just
remember, what you do now will affect what the wizards create for you later, so if something doesn’t look
exactly like what is shown in this book, check what you set for UI Defaults.

Summary

SQL Workshop may not measure up to some of the more popular GUI tools, but it certainly has the power to
do most things you need to do relating to the creation and management of tables and data. You've also seen
that SQL Workshop has a few built-in but hidden gems like the Create Lookup Table Wizard. Finally, among
the many useful utilities is the UI Defaults manager, making your job as a developer just a bit easier.

Sure, this chapter hasn’t covered SQL Workshop in its entirety, but you've definitely gained a fair amount
of insight as to what it’s capable of. You will use SQL Workshop for a number of other things throughout this
book, but don’t wait. Go poke around in some of the dark nooks and crannies and see what you find!

66

CHAPTER 5

Applications and Navigation

With some basic data created, you can now create the shell for your application. APEX provides a wizard
for creating applications. Several options are available within the wizard to assist with generating a starting
application. Based on how much prior planning has been done, the result of running the initial application
wizard may vary. You will start this chapter by walking through the steps of the wizard, as I highlight the
most common features.

For the example application, you will create the most basic shell of the application with only one page.
In other scenarios, you could create an initial draft of all your pages. To illustrate the individual wizards for
creating pages, they will be explored in more detail in later chapters.

After the example application has been created, you'll add shared components to it. Shared
components are items and structures that are common across all the pages in the application. You will
prepare breadcrumbs, lists, and lists of values (LOVs) for use; you will also learn how the Global Page
concept works. By the end of the chapter, you'll have some basic components for the application and a
starting outline for the remaining pages.

The Create Application Wizard

Applications in APEX are created through application imports, by copying an existing application, or
by running the Create Application wizard. The Create Application wizard is the first step in creating
an application from scratch. This chapter will walk you through the process of creating the Help Desk
application using the Create Application wizard.

To begin, navigate to the Application Builder in APEX. You can do this from the APEX Home page by
clicking either the Application Builder menu item or the Application Builder icon shown in Figure 5-1.
The Application Builder shows a list of the current applications. At the top of the list is a highlighted Create
button, shown in Figure 5-2. Click the button, and the wizard starts.

ORACLE Application Express Application Builder SQL Workshop Team Development Packaged Apps
: [|%]
()

" 6uC Q=]

Application Builder SQL Workshop Team Development Packaged Apps

Figure 5-1. The Application Builder icon on the APEX Home page

67

CHAPTER 5 " APPLICATIONS AND NAVIGATION

Q~ Go | 88 | BB Actionsv Reset

No applications found.
Figure 5-2. The Create button

You're presented with four choices for application type: Desktop, Mobile, Websheet, and Packaged
Application. The Application Builder will quickly become very familiar to you when you’re working with
APEX. Because of this, the shortcut menu in Figure 5-3 is also available to assist with quick navigation even
when you're in other sections of APEX.

Application Builder ° Sal

Database Applications

Websheet Applications

Create W
Import
Export
Workspace Utilities >
(
Migrations

Figure 5-3. The shortcut to creating an application

Sample and Packaged Applications

If this is a new workspace, there may or may not be a sample application that was created automatically
when the workspace was provisioned. The automatic installation of sample applications is a feature setting
that can be configured by the APEX administrator. If a sample application isn’t installed, you can install one
manually by choosing Packaged Application in the first step of the Create Application wizard, as shown in
Figure 5-4.

68

CHAPTER 5 ' APPLICATIONS AND NAVIGATION

Create an Application

What type of application would you like to create?

=l =M=

Desktop Mobile Websheet

Packaged Application

From a spreadsheet - Copy an existing appiication

o

calw

Figure 5-4. Choosing the type of application

The Packaged Apps section is where you can install and manage the applications that are bundled with
the APEX distribution. The main page, shown in Figure 5-5, shows the Packaged Apps Home page, available

from APEX’s main navigation menu. From here you can see which applications are installed and can
navigate to the three subsections.

[Bracuapeadopatiome = NewTad Doy
& 2 C N [vnS0apenTp=4T50:18101 743078446 NOAP: a00=
ORACLE Agpicaton Express Acpicanon Budder SOL Workaror Toarm Devecormmn Pachaged Aogs = e Doug

About
Packnged App Gallary Do Packaged App Adrr
instalied Packaged Apps Featured Packaged Applicabons
n Sample Database Applcation ’ -
' §4 Live Poll

Figure 5-5. The Packaged Apps Home page

69

vww .allitebooks.cond

http://www.allitebooks.org

CHAPTER 5 ' APPLICATIONS AND NAVIGATION

Packaged App Gallery

The Packaged App Gallery presents all of the applications that come bundled with the APEX distribution.
There are 35 separate packaged apps that can belong to several different categories, including Software
Development, Tracking, Team Productivity, Marketing, Knowledge Management, IT Management, Project
Management, Sample Application, and Sample Websheet.

Clicking on the icon of an application takes you to a detailed information page for that application.
Here, you'll be able to see a screenshot of the application, read its full description, and see version
information for the app, as seen in Figure 5-6.

Edracnages Acpacaton © Doug
€ - C N [vns0ape A ATABASE &0 =

,) Checklist Manager
V sl Appdication

Checklist Manager

Figure 5-6. The Checklist Manager Packaged Apps information page

Clicking the Install Application button will step you through the process of installing the selected
application in your current workspace. A pop-up installation wizard will present you with a choice of which
authentication method to use; it normally defaults to Application Express Accounts. Clicking the final Install
Application button in the wizard will install the application and any of its supporting objects, including
any required database objects. Once the installation is complete, you're taken back to the application’s
information page where, as shown in Figure 5-7, you can see the application has been successfully installed,
and you're given the options to manage and run the application.

70

V.

CHAPTER 5 " APPLICATIONS AND NAVIGATION

Checklist Manager
) Installed §53 Manage E

Figure 5-7. See that the Checklist Manager App has been successfully installed

There are a few things that you should know about Packaged Applications:

1.

Any application that has “Sample” in the name is there to demonstrate
functionality available in APEX and therefore will be installed in an unlocked
state by default. This means that developers will be able to edit the application
and see how the APEX team developed the app.

Applications that do not have “Sample” in the name are provided as production
ready and will be installed in a locked state that does not allow any editing until
the app is specifically unlocked. This can be done via the Manage button, as
shown in Figure 5-7. Any of these applications that are installed and remain
locked are fully supported by Oracle in a production environment. These locked
applications can also be upgraded to more current versions that may come with
future versions of APEX. The moment you unlock them, all support from Oracle
ceases, upgradeability expires, and there is no way to relock an application.

As of APEX 5.0, all Packaged Applications are installed into the workspace’s
default “parse as” schema. Currently there is no direct way to install them
in a secondary “parse as” schema without first unlocking and exporting the
application, thereby voiding any support.

Even though the sample apps were written as learning aids, there is a lot to be learned from many of
the production-ready applications as well. I heartily suggest your first act after finishing this book is to take a
look at the inner workings of some of the packaged apps.

Packaged App Dashboard

As shown in Figure 5-8, the dashboard page presents an overview of the utilization of Packaged Apps in the
current workspace. You're presented with the total number of available apps, the number installed, and
whether there are any applications that can be upgraded. You can also see who has installed the apps and
how frequently they are used.

71

CHAPTER 5 ' APPLICATIONS AND NAVIGATION

® 00 Howecen [e— = Doug
L [] VIS0 apa Tp=A T 5026191 T 43076446 M & 0@ =
ORACLE Appicaton Exgresa Packagna AC 3 e
5 32)
Packaged Applications Instaled Not Installed Available To Upgrade

Figure 5-8. The Packaged Apps dashboard

Packaged App Administration

The Packaged App Administration page provides a list of administration tasks specifically related to the
Packaged Applications installed in the current workspace. If you are logged in as a developer, you'll only see
options relating to managing Interactive Report settings and Activity reports. However, when logged in as a
workspace administrator, you'll see a section called Manage Services that shows a small subsection of what is
available to you in the full Administration section.

Websheet Applications

This book will cover websheet application features in Chapters 11 and 12. The starting point for creating
a websheet application is the same as for a database application. The primary difference is the creation of
predefined database objects that support websheet applications.

Database Applications from Spreadsheets

When creating desktop applications from the wizard, you're quickly faced with a question: where is

your data coming from? One of the links listed in Figure 5-4 lets you create an application based on data
from an existing spreadsheet. If you choose this option, the Create Application wizard provides steps for
loading data into a single table, and at the same time creates an application that allows you to manage and
manipulate that data. The application is very simple, using a report and form combination such as that

72

http://dx.doi.org/10.1007/978-1-4842-0466-5_11
http://dx.doi.org/10.1007/978-1-4842-0466-5_12

CHAPTER 5 " APPLICATIONS AND NAVIGATION

shown in Figure 5-9. Creating a database application from a spreadsheet is a fast and easy way to get from
a single-page spreadsheet to a working online application that can be expanded with additional tools and
functionality.

0, v Go 935 | B | Actionsv Create Page >
Page Name Updated Updated By Page Type Group User Interface Lock Run
1 Report Page Now admin Home Unassigned Desktop Y ®
2 Insert Form Now admin DML Form Unassigned Desktop ﬂ'_ '\Q
3 Update Form Now admin DML Form Unassigned Desktop ":‘: \"‘;
4 Success Page Now admin Static HTML Unassigned Desktop s ®
101 Login Page 2 seconds ago admin Login Unassigned Desktop U /P\

Figure 5-9. The application pages from a spreadsheet application

Applications from Scratch

When you create an application from scratch, the wizard offers many interesting options. You can create
any number of pages, and link pages to different tables of data. Additional steps give advanced options
that, when planned for, are very powerful. Creating an application from scratch is the method used in the
ticketing-application exercise. Here is what to do to begin the creation process:

1. Navigate to the Application Builder, and click the Create button to initiate the
Create Application wizard.

2. Select Desktop as the application type, and click Next.

The following subsections describe the remainder of the creation process in detail. Each subsection
contains one or more subsequent steps in the creation process. Read the descriptions and follow the steps as
described.

Naming the Application

After selecting the Desktop application option, you're prompted for details of the application, as shown in
Figure 5-10. The Schema select list exists for workspaces that have been granted access to more than one
database schema, and it allows you to choose which schema you want your application to use as its “parse
as” schema. The Name value is what you use to identify the application inside the builder and is used as the
title of the application.

73

CHAPTER 5 ' APPLICATIONS AND NAVIGATION

Create an Application

Name
* User Interface Desktop

Schema APRESS
" Name Help Desk

: Application 286
Theme Universal Thema (42)

Theme Style Vita

< Cancel

Create Application

Figure 5-10. Entering the application properties

Application IDs must be unique across the entire instance of APEX, so it’s best to leave the ID set to the
number APEX has assigned.

The next options reference the APEX Theme and Theme Style. APEX themes are groupings of templates
that are used to establish the look and feel of pages, reports, buttons, and other graphical components. As
APEX and web standards evolve, so do the premade themes in APEX. Version 5.0 offers a groundbreaking
new theme option called the Universal Theme, as well as includes a number of HTML5/CSS3-compliant
themes and a responsive theme, along with legacy themes, some of which have been around for quite a
long time.

Although APEX currently comes with 27 desktop themes of varying looks, it’s always possible to
customize an existing theme or to create a completely new one. The APEX administrator also has the
ability to create themes that are specific to their instance of APEX. Choosing a theme as part of the Create
Application wizard is an easy way to apply a default theme. As you might expect, you can change your mind
later and apply a different theme. Additional themes can be added, modified, and tested as part of the
shared components of APEX.

Figure 5-11 shows the APEX theme chooser. The select list at the top of the region dictates which themes
to show. Your choices are as follows:

e Standard Themes: Currently, for APEX 5.0 this only shows the Universal Theme.
All other themes within APEX are now considered “legacy themes.

e Custom Themes: Shows any custom themes that have been installed by the
workspace or instance administrator. By default, there are no custom themes.

e All Themes: Shows all available themes across all the previous sets, including the
26 legacy themes.

74

CHAPTER 5 " APPLICATIONS AND NAVIGATION

Select Theme X

Show: All Themes 4

Applications developed with Cracle Application Express 5.0 will run on Mozilla Firefox, Google Chrome, Apple Safari, and Microsoft Internet
Explorer. Please reference the Oracle Application Express User's Guide for specific version information. Please note that the Universal Theme
requires Internet Explorer 9 or newer.

D Name Navigation -=_T

42 Universal Theme List

1 Simple Red Tabs
2 Builder Blue Tabs
3 Midnight Blue Tabs
4 Topaz Tabs
5 Sunrise Tabs
6 Centered Blue Tabs
7 Modern Blue Tabs

Figure 5-11. Theme selection

The Theme Style option is a subselection of the chosen theme and will present the styles available
under that theme. Currently, only the Universal Theme has related theme styles.

Having reviewed the themes, continue the creation process by choosing the Universal Theme for your
example application. Follow these steps:

3. EnterHelp Desk for the Name, making sure your schema is set.

4. Select Universal Theme (42) from the Theme select list, and then choose Vita as
the Theme Style for your application.

5. Click Next.

Laying Out Pages

The next step in the wizard is to decide which pages you need for your application. The wizard requires
at least one page to be created, but Figure 5-12 shows that you have the option to create as many pages as
you like.

75

CHAPTER 5 ' APPLICATIONS AND NAVIGATION

Create an Application

° @
Pages
Page Name Type Page Mode Source Type Source Parent Page
= 1 Home Blank Normal - - 2 X
4 2 Page2 Blank Normal - - 1 X
= 3 Page3d Blank Normal - - 2 x
“ 4 Tickets Report Normal Table TICKETS 1 %
1 5 Tickets (5) Report Normal Table TICKETS - %
= 6 Manage Tickets Form Normal Table TICKETS 5 *®

Add Page

4 Cancel Create Application

Figure 5-12. Multiple pages defined in the Create Application wizard

The Add Page Button at the bottom of this page invokes a pop-up wizard that allows you to define pages
of varying types. Each page type calls for different information to be provided. For instance, adding a report
page prompts you to select either a table name or a query on which to base the report. Choosing a chart
requires a chart type and a query for the initial data series.

For now, you'll stick with the blank home page and create the rest of the pages later as needed. Thus,
the next step is simple:

6. An application home page has already been created. Accept the defaults on this
page and click Next.

Copying Shared Components

The next screen asks whether you wish to copy shared components from another application. This comes
in handy if you have a template application that houses components that are shared across applications in
the same workspace. Copying shared components isn’t an advanced procedure, but it does lend itself to a

76

CHAPTER 5 " APPLICATIONS AND NAVIGATION

controlled and mature development process. This step in the wizard is a convenience, because the same
objects can be copied in other ways after the application has been created. You don’t need this step, because
you're creating an application from scratch. Skip the step as follows:

7. Select No for Copy Shared Components from Another Application, and click
Next.

Application Attributes

The next step in the wizard allows you to set some of the application-level attributes, such as the type of
authentication to use and globalization attributes, including from where to derive the primary language,
date formats, and so on. Let’s look at each of these individually so you can gain a full understanding of the
ramifications of each.

Selecting an Authentication Method

With every application, you need to make a choice about authentication, even if that choice is no
authentication at all. This topic is discussed further in Chapter 9. By default, the APEX Create Application
wizard provides three options for authentication:

e Application Express Accounts: Users and passwords are local to the APEX workspace.
These users are managed in the same way the developer accounts are managed
inside the APEX workspace, and users only work inside the current workspace.

e Database Account: This option uses the Oracle Database schema user names and
passwords for credentials. Some organizations use this type of database-driven
authentication to keep track of users. The application still executes as the chosen
“parse as” schema, not as the individual user in the database.

e No Authentication: This is like a public website. Users aren’t prompted for any type
of authentication. This is useful for informational applications where the question
“Who are you?” isn’t important.

For simplicity, the default is to use the Application Express authentication scheme. This is the one
setting that provides login security; by default, the developer writing the application can log in without any
additional work.

Note Many organizations have an existing method of authenticating users. If an LDAP server is currently
available (such as Oracle Internet Directory, Microsoft Active Directory for network domain authentication, or
even an Oracle E-Business suite), you may want to use this system for APEX authentication. The number of
options and methods is beyond the scope of this book. Simply know that with the Oracle Database technology
and the technology of your application server, it’s possible to use many of the most common authentication
infrastructures.

7

http://dx.doi.org/10.1007/978-1-4842-0466-5_9

CHAPTER 5 ' APPLICATIONS AND NAVIGATION

Selecting Tab Options

Tabs are a common navigational structure for web applications and have been supported by traditional
APEX themes since very early versions. They provide an intuitive interface for switching subjects or general
areas in an application. Three options are available:

e No Tabs: This is a basic page style where no tabs are generated by the wizard and no
tabs are displayed by the page template. This is often selected for small applications
or applications where navigation is managed by a different method, such as lists,
buttons, or other template constructs.

e One-Level Tabs: This is the most common style of tab layout; it’s useful for small-
to mid-sized applications where functionality needs to be separated yet easily
accessible. This is also the easiest type of tab style to manage.

e Two-Level Tabs: The construction of two-level tabs uses a parent tab construct and
breaks the standard tabs into tab sets. It’s similar to having a controlling tab.

Legacy themes within APEX support up to two-level tabs in the display templates provided, and the
wizard builds the shared components for the tab set as part of the wizard. If you know your application’s
page outline and can lay it out during the creation of the application, the wizard will do most of the tab
setup. Designing the page at creation time can be a big timesaver if the application design calls for a
significant number of tabs. In any case, you can create and modify the shared component after the initial run
of the Create Application wizard.

Note The new Universal Theme does not use tabs for navigation, but instead uses nested static lists.
Therefore, when you choose to use the Universal Theme, the Tabs option on the Application Attributes page of
the wizard will be absent.

Globalization Options

The authentication step in the wizard also includes six additional settings, as shown in Figure 5-13. A

few of the settings have to do with the ability to translate the application to other languages. Multilingual
applications are beyond the scope of this book, but for completeness the general usage descriptions of these
options are included.

78

CHAPTER 5 ' APPLICATIONS AND NAVIGATION

Create an Application

(] @ O

Attributes

Authentication Scheme Application Express Accounts

Language English (en)

User Language Preference Derived Appilication Primary Language

From
Date Format DD-MON-YYYY ~
Date Time Format | DD-MON-YYYY HH:MI:SS ~
Timestamp Format ~
Timestamp Time Zone Format ~

Figure 5-13. The Attributes page of the Create Application wizard

These settings are as follows:

Language: This is the language the application uses by default. It’s also used as
the basis for any internationalization and translation in the case of multilingual
applications.

User Language Preference Derived From: For multilingual applications, this setting
determines how the application derives the translation that is necessary.

Date Format: This option sets the default of how date elements are formatted within
the application. Different regions of the world have assumptions about how dates are
formatted, especially when they're strictly numeric values. A common format that

is used to try to alleviate this issue is the DD-MON-YYYY format. This style of format
makes it clear which portion represents the day, month, and year (for example, 01-
JAN-2010).

Date Time Format: This option sets the default formats of dates that include a time
dimension.

Timestamp Format: This option specifies the format used for timestamp datatypes
used throughout the application.

Timestamp Time Zone Format: This option specifies the format used for timestamp
datatypes with time-zone data used throughout the application.

The wizard uses these settings as starting values. You can alter them as needed in the shared
components of the application.

79

CHAPTER 5 ' APPLICATIONS AND NAVIGATION

The language, date format settings, and time zone handling are classified as globalization settings.
After the application is created, you can turn on automatic time-zone detection; this setting is found on
the Globalization tab of the Application Settings. Automated time-zone detection is especially useful for
applications whose users span different time zones.

Continue creating the example application as follows:

8. Set Authentication Scheme to Application Express, Language to English
(en), and User Language Preference Derived From to Application Primary
Language.

9. Choose 12-JAN-2004 (returns DD-MON-YYYY) for Date Format and 12-JAN-2004
14:30:00 (returns DD-MON-YYYY HH:MI:SS) for Date Time Format, and leave
the last two options blank.

10. Click Next.

Completing the Create Application Wizard

The last step of the wizard is a simple confirmation dialog. Clicking the Create Application button seen
in Figure 5-14 commits all the settings and generates the application. The Previous button lets you walk
backward through the wizard to make any additional changes before you complete the process.

Create an Application

@ @ (] @ @

Confirm

You have requested to create an application with the following attributes. Please confirm your selections.
Application 286
Name Halp Desk
Parsing Schema APRESS
Default Language en
Navigation Navigation Menu List
Default Authentication Scheme Appiication Express Authentication
Theme Type Standard
Theme Universal Theme

Subscribe Theme No

Figure 5-14. Completing the Create Application wizard

80

CHAPTER 5 " APPLICATIONS AND NAVIGATION

Complete your creation of the example application by executing the final step in the process:
11.

Review the wizard’s summary page and confirm the choices you've made by
clicking Create Application.

You now have a simple application with only two pages, as shown in Figure 5-15 (View Report view).
Run that application, and you should see the login page shown in Figure 5-16. That login page takes your
normal APEX developer user name and password. Once logged in, you'll be taken to the application’s Home
page, as shown in Figure 5-17.

Go 83 | B | Actionsv Create Page >
Page .| Name Updated Updated By Page Type Group User Interface Lock Run
1 Homa 1seconds ago - Home Unassigned Desktop B (O]
101 Login Page 1 seconds ago Login Unassigned Desktop = (O]

Figure 5-15. Resulting pages for the Help Desk application

Log In

Username

Password

Figure 5-16. Login prompt when running the application

81

CHAPTER 5 " APPLICATIONS AND NAVIGATION

Home ® |+

€ @& vm50/apax/T7p=266:1:804682843283: @ | | Q Search e A 400 | =

Home

reloase 1.0 Set Screen Flsader Mode On

{o} Home ™ Application286 [EditPage1 (O Session 5] ViewDebug £¥ Debug EH ShowGrid [k} QuickEdt = Theme Roller 53
Figure 5-17. The application after you've logged in

Now that you have the shell of the application created, you can move forward in extending it by adding
other pages, regions, and items.

Static Content Regions

The Static Content region type is one of the most basic and yet most flexible types of region. By manipulating
the attributes of a Static Content region, as shown in Figure 5-18, you can control how that region is
displayed:

e Output As: Selecting HTML will interpret any markup as entered in the region source
as HTML and will render the resulting output. Selecting Text (escape special
characters) will escape (not interpret) special characters such as <, >, 8 when
emitting the region source to the page. Example:
 will show up exactly as the
code
 rather than being interpreted as a break or return.

e Expand Shortcuts: Enables or disables support for shortcut technology. This
technology includes a shared component object that can be used for managing a
type of variable using SHORTCUT_NAME syntax.

82

CHAPTER 5 " APPLICATIONS AND NAVIGATIO

N

17 Moiicabn 200 Friys Dl e 10| b (O] [+ [avlm] [a]ells] B “
=] 4 ca & Geid Layout Messages Page Search Help ki
Rendering anll 2 =2 Nl = = T —
 Settiny

S8 REGION | ings

e = coe CREATE Cutput As HTML

i Expand Yes No

Shortcuts

Figure 5-18. Viewing the attributes of a Static Content region

With the Static Content region’s simplicity comes a wide variety of uses. A Static Content region is a

container that can have its own value, embedded JavaScript, or CSS definitions, or it can contain other page

items. Any valid HTML entered in the source is rendered on an APEX page. Substitution-string syntax, such
as &ITEM_NAME., can also be used to display item values in the source text.
Continuing with the Help Desk application, add some content to the first page:

1. Navigate to the Application Builder, and Edit the Help Desk application.
Depending on how you're viewing the applications report, you may need to click
the icon as shown in Figure 5-19 or click the name of the application as shown in

Figure 5-20.

[] o [E] 8| s o

?aglp Desk 6
HD

Figure 5-19. Edit the Help Desk application from the icon view

| Qv Go 83 | BB | Actionsv Reset

Application = | Name Pages Type Updated By Updated Run
286 Help Desk 2 Database Application admin 11 minutes ago O]

Figure 5-20. Edit the Help Desk application from the report view

2. Edit the Home page by clicking the link for the page name in the report, as shown
in Figure 5-21.

83

CHAPTER 5 " APPLICATIONS AND NAVIGATION

Qv Go B3 | BB Actionsv Create Page >
Page .| Name Updated Updated By Page Type Group User Interface Lock Run
1 Home 15minutesago admin Home Unassigned Desktop U] »
101 Login Page 33 minutes ago - Login Unassigned Desktop e ®

Figure 5-21. Editing the Home page

3. From the Gallery in the lower center of the screen, select Regions for the
component type.

4. Click and drag the Static Content icon from the Gallery into the Grid Layout
section of the screen and drop the component in the Content Body content area,
as shown in Figure 5-22.

= & ra & Grid Laryout Maszages Page Sawch Heip Page

Use imartace Deaidiop

BUE REGIONS Page Mode Mol

PREVIOUS CLOBE CELETE HELP CHANGE DT cory CREATE NEXT Page Template Theme Detaut
Tempiate
e , Optices.
CS55 Classes
% s
Macia Type

¥ Narvigation Menu

Overice User Yes | No
Intartace Livel

* Narvigation

CursorFocus Do not focus cursar

m

Regions | Mems Butons

v JevaSoript

—— Fie URLs (3]

Function end Global Vasiakio Declaration 3]

war

Figure 5-22. Dragging the Static Content component to the Content Body area

Once you've dropped the component, the view will change, showing the new region in place within the
Grid Layout and selected as current within both the Tree Pane and the Grid Layout, as shown in Figure 5-23.

84

B & {11]

8

Rendering ; = E H § o

Page 1: Home
Pre-Rendering
Ragions
Breadcrumb Bar
Breadcrumbs
1= Alributes
Content Body
|
i = Anributes

Post-Rendering

CHAPTER 5 " APPLICATIONS AND NAVIGATION

Grid Layout Messages Page Search Help
& | | =1
[Home
PAGE HEADER

PAGE NAVIGATION

BREADCRUME BAR

T Breadcrumbs

ITEMS

REGION CONTENT

SUB REGIONS
PREVIOUS CLOSE DELETE HELP CHANGE EDIT cory CREATE NEXT
CONTENT BODY
_ 1
cory EDT PREVIOUS NEXT

REGION CONTENT

TEMS

SUB REGIONS

CLOSE HELP DELETE CHANGE CREATE

FOOTER

Figure 5-23. The new Static Content region shown in the Page Designer

Now, edit the attributes of the new region:

5. Inthe Attributes Pane, under the Identification section, set the Title to APEX

Issue Tracker.

6. Inthe Attributes Pane, under the Source section, enter the following for the Text
and then click the Save button at the top of the page. See Figure 5-24.

<h1>Welcome to the APEX Issue Tracking System</h1>

Select an option from the list

85

CHAPTER 5 " APPLICATIONS AND NAVIGATION

® % 2 & | = [ICH
Region 2
==+ | £ Y
¥ |dentification
s
Title APEX Issue Tracker
Type Static Content &=
¥ Source
Text 2l

<hl>Welcome to the APEX Issue Tracking
System</hl>
<br. />Select an option from the list

¥ Layout

r

Sequence 10

Figure 5-24. Entering the Title and Text and saving your work

Run the page by clicking the Run button at the top of the Page Designer. You should see the changes
you just made indicated by a new region with a friendly welcome message. Your results should be similar to
those shown in Figure 5-25.

Home

APEX Issue Tracker

Welcome to the APEX Issue Tracking System

Select an option from the list

Figure 5-25. Results after adding the Static Content region

86

CHAPTER 5 " APPLICATIONS AND NAVIGATION

Public Pages

As mentioned, it’s possible to allow the entire application to use no authentication scheme. But what if you
want some of the pages to require authentication, and others to be public? How can you make a page that
doesn’t require a login in order to view it?

If any of the pages in an application require authentication, an appropriate authentication scheme
must be applied to the whole application. APEX lets you define individual pages as Public or Requires
Authentication using a defining property of the page. Each page can have different security requirements
(authorization), but only one authentication mechanism can be applied to an application. Public pages are
useful for introductory landing pages, login pages, and information pages.

In the Help Desk project, you want to have the main page available to all visitors. To accomplish
this, you can modify the first page of the application to allow it to be seen by anyone without requiring
authentication. Do that via the following steps:

1. Inthe Help Desk application, navigate to and edit page 1.

2. Inthe Tree Pane, edit the page attributes by clicking the page name (Home) in
the Rendering Tree. The page name appears as the root node of the tree, as
shown in Figure 5-26.

B & Ca &
Rendering 1= e v

Pre-Rendefing
Regions
Breadcrumb Bar
Breadcrumbs
Attributes
Content Body
APEX Issue Tracker
Attributes

Post-Rendering

Figure 5-26. Selecting the page node in the Rendering Tree

3. Inthe Attributes Pane, scroll to the Security section, shown in Figure 5-27. In this
section, change Authentication to Page Is Public.

87

CHAPTER 5 ' APPLICATIONS AND NAVIGATION

Page
=|=| < | = o
¥ Read Only
Type - Select - o =
¥ Security
Authorization - Select - <

Scheme

r

Authentication | Page Requires Authentication | T |
Page Requires Authentication

Rejoin |_\

Sessions -

Deen | inkinn Annlication Default

Figure 5-27. Changing a page’s authentication setting

4. Atthe top of the page, click Save.

Now, when the page is run, the authentication screen doesn’t appear when page 1 is requested. You will
learn more about authentication and authorization in Chapter 9. For now, just know that the change you've
made allows users to see the first page of the application without being logged in.

Navigation Bar Entries

Each APEX application has one navigation bar that may contain multiple entries. Examples of links typically
displayed on every page are Login, Logout, Help, and My Account. As a developer, you can create and modify
navigation bar entries depending on the application and need. The navigation bar can also go beyond
standard link text; it can be modified to include images. Entries can be based on conditions, authorization
schemes, and build options. Placement of navigation bars is dictated by the page template substitution
variable #NAVIGATION BAR#. In most applications, the navigation bar is placed either at the upper right or
upper left of the page.

The example application already has a very simple navigation bar that has been created for you, as
shown in Figure 5-28. It currently contains only a Log Out link.

88

http://dx.doi.org/10.1007/978-1-4842-0466-5_9

CHAPTER 5 " APPLICATIONS AND NAVIGATION
Log Out

Figure 5-28. The basic navigation bar

Because you've modified the Home page to be a publicly viewable page, you need to add a navigation
bar entry that allows users to log in. At the same time, you need to make both the Login and Log Out links
context sensitive so they're only displayed when it makes sense. (For instance, the Log Out link should only
be displayed when a user is actually logged in.)

Navigation bars are part of an application’s shared components, so they're created and maintained from
the Shared Components section of the Application Builder. Create one in the example application as follows:

1. From the Page Designer, click the Shared Components icon in the upper-right
section of the page, next to the Save button, as shown in Figure 5-29.

Q &v Ov @ ooy v

W
Shi

ared Components
Page st

Figure 5-29. Navigating to the Shared Components screen from the Page Designer

2. Under the Navigation section, click Navigation Bar List, as shown in
Figure 5-30.

| Navigation

Lists
Navigation Menu

Breadcrumbs

Y

Figure 5-30. Navigation components in the Shared Components screen

89

CHAPTER 5 ' APPLICATIONS AND NAVIGATION

You'll see a report showing that a Navigation Bar List called Desktop Navigation Bar already exists. You
will need to edit this list to add your Login entry and to edit the Log Out entry.

3. Click the Desktop Navigation Bar link in the report.

Click the Create List Entry button in the upper right of the screen.

In the Entry section of the page enter Login in the List Entry Label field.
In the Target section, set Target Type to Page in This Application.

N o a &

For Page, enter 101. This will send the user back to the login page after they've
logged out. See Figure 5-31.

Entry
List: Desktop Navigation Bar
Parent List Entry - No Parent List ltem -
Sequence 20
Image/Class ~
Attributes ~
Alt Attribute

" List Entry Label |Login

Target
Target type Page in this Application
¢ Page 101 ~
reset pagination for this page

Printer Friendly
Figure 5-31. Navigation bar settings

8. Inthe Conditions section, set Condition Type to User is the Public User (user
has not authenticated), as shown in Figure 5-32.

Conditions

Condition Type

PL/SQL item / column=value m / column not null item / column null requ: el exists never none

Figure 5-32. Navigation bar conditions

90

CHAPTER 5 " APPLICATIONS AND NAVIGATION

9. Click Create List Entry at the top of the page.

Run the application now. If you're logged in, you only see the Log Out navigation bar entry. Click
the Log Out link. Once you're logged out, you see the new navigation item, as shown in Figure 5-33. This
identifies a small problem: the Log Out link can still be seen even though you've already logged out.

LogOut Login

Figure 5-33. Login and Log Out links both showing

Clearly, it’s a problem to show the Login and Log Out choices at the same time. After all, only one of
those two choices can apply. Let’s tackle that problem:

1. Navigate back to the Shared Components section for the Help Desk application.

2. Edit Navigation Bar List, and then edit the Desktop Navigation Bar list.
3. Edit the Log Out navigation bar entry by clicking on its name in the report.
4

In the Conditions section of the page, set Condition Type to User is
Authenticated (not public), as shown in Figure 5-34.

Conditions

Condition Type User is Authenticated (not public)

PL/SQL item / column=value item/column not null item / column null request=el exists never none
Figure 5-34. Navigation bar condition type

5. Click Apply Changes.

Run the application again. You should see that the Login and Log Out navigation items are mutually
exclusive. When you created the new navigation item, you applied the condition to allow it to be seen only
by the public user. The Log Out navigation item was created as part of the Create Application wizard; no
condition was placed on the Log Out item by default. You will learn more about conditions in Chapter 8.

Global Pages

A Global Page is a special type of page that acts as a “master page” for your application and can be added
one per user- interface type (that is, you may have one Global Page for the Desktop UI and another for the
Mobile UI).

Items placed on a Global Page are rendered on every page in its related UI for that application unless
conditionally told to do otherwise. This is particularly useful when you identify the need to display the same
region on multiple pages or even on all pages in your application. Simply move a region to your Global Page,
and it’s rendered with every page.

91

http://dx.doi.org/10.1007/978-1-4842-0466-5_8

CHAPTER 5 ' APPLICATIONS AND NAVIGATION

A good example of usage is a breadcrumb region or a region that contains custom JavaScript code that
needs to be available to every page. Region contents from a Global Page are included on every page of that
UI, even when a region doesn’t render visibly.

Although you can assign any page number to a Global Page, the default page number for a Global Page
related to a desktop interface is zero (0). In fact, Global Pages take the place of what used to be called Page
Zero in previous versions of APEX.

You may notice when looking at the definition of a Global Page in the APEX Page Designer (Figure 5-35)
that there are no nodes in the Tree Pane for the Processing tab. Global Pages are only used during page
rendering. Regions that are added to a Global Page are included even on the Login page. You need to consider
the different page types in an application when adding content to a Global Page.

eve ‘g oo Dt
€ &m0 c o0+ n 4080 =
ORACLE A Appicatan Builder) (&)
Aapicaton 786 o . 0 Go Save ®
i Layout AL A Page Search Help Page

Gicbal Page - Desicop

Changed O 19-May-2015 143558

Figure 5-35. There are no Processing nodes for a Global Page, as shown in the APEX Page Designer

Creating a Global Page is like creating any other page in an APEX application. However, once it’s
created, it’s no longer available in the Creation Options list for that UI type. Let’s create a Global Page for the
desktop interface:

1. From the Application page list, click the Create Page button.

2. Inthe resulting pop-up wizard, select Global Page from the Page Type list and
click Next. Figure 5-36 shows the Global Page option, which should be near the
bottom of the list.

92

CHAPTER 5 " APPLICATIONS AND NAVIGATION

Create a Page X
0-®-0 \/ oo =
[;] oo oo
Wizard Data Loading Feedback Page Login Page
Access Contro Global Pakge

Show Unsupported No

Figure 5-36. Choosing to create a Global Page

3. Leave Page Number set to 0 (zero), and click Create.

You should now see your Global Page listed in the pages for the application. Currently, there is no
content on the Global Page. You will use this Global Page to contain and display the breadcrumb region
covered in the next section.

Breadcrumb Regions

Breadcrumbs are a popular navigation structure. They give the user a quick and intuitive representation
of the current navigation path with optional functionality to navigate back using the structure. Oracle
Application Express uses the structure in the builder shown in Figure 5-37.

Application 286 = Page Designer

Figure 5-37. Example of breadcrumbs in the Application Builder

In APEX, breadcrumbs are a declarative structure with built-in behavior. They're managed as shared
components and have their own region type and template. When you ran the Create Application wizard,
the pages that the wizard created automatically included a region to contain the breadcrumbs. Figure 5-38
shows the Breadcrumbs region in the Breadcrumb Bar section of the page.

93

CHAPTER 5 ' APPLICATIONS AND NAVIGATION

B g d & Grid Layout Messages Page Search Help
Rendering B C= =2 e =2

Pre-Rendering

Ragions
Breadcrumb Bar GE NAVIGATION
Breadcrumbs p—
Attributes.
Breadcrumbs
Content Body
APEX Issue Tracker A eprd
Attributes REGION CONTENT
Post-Rendering
SUB REGIONS
PREVIOUS CLOSE DELETE HELP CHANGE EDIT cory CREATE

4 NEXT

Figure 5-38. The Breadcrumbs’ position in the page-rendering hierarchy

When you're creating new pages for an application, the Create Page wizard has an option to assist in
creating new breadcrumb entries. When you use this option, child pages receive a copy of the breadcrumb
region from the parent, as well as an automatic entry in the Breadcrumb group. When a breadcrumb
region doesn’t exist, nothing is copied, but the entry in the breadcrumb shared component is still created.
An issue with this approach is that if you need to make any changes to the region’s display or other layout
considerations, they have to be done manually on every page that contains a breadcrumb region. Adding
the region to a Global Page to make it appear on all pages can be helpful, because it gives you one point of
change instead of many.

Continuing with the Help Desk application, the design is supposed to have a breadcrumb region that
appears on all pages. It isn’t necessary to re-create the region manually. Because the Create Application
wizard created the region for you, you can use the Copy Region feature in APEX to duplicate the region to
your Global Page. Do the following:

1. Edit Page 1 using the Page Designer.

2. Right-click the Breadcrumbs region in the Rendering Tree Pane to show the
context menu, as shown in Figure 5-39.

94

CHAPTER 5 " APPLICATIONS AND NAVIGATION

B & co & Grid
1= o= = -
Rendering 2= A= SV Q
[Page 1: Home [Home
Pre-Rendering
Reglons PAGE HEAD
v— Breadcrumb Bar PAGE NAVIG
. RUI
: — Attributes Create Region -
= Content Body _ i
Create Sub Region
APEX Issue T
Attributes Create Page Item =
Post-Rendering Create Button
RE1
Create Dynamic Action hor
Duplicate r
Delete Del
e
Copy to other Page...
o
Expand All Below b
Collapse All Below 5

Figure 5-39. Context menu for the Breadcrumbs region

3. Select the Copy to other Page... option.

4. Change the page number for the new region to 0, as shown in Figure 5-40, and

click Next.
Copy Region ®
(] @
To Page
Identify page for new region.
*ToPage 0 ~

> Copy From Region

» Recently Edited Pages

Figure 5-40. Setting the destination page
95

CHAPTER 5 " APPLICATIONS AND NAVIGATION

The Copy wizard allows the modification of what is copied in a limited fashion. Options that don'’t
apply are disabled. In the current example, you could modify the region name and sequence as well as some
display-placement options. For now, leave them with their default values:

5. Confirm the settings shown in Figure 5-41. Click Copy to complete the wizard.

Copy Region X
] o @

New Region

Copy From Page: 1. Home
Copy To Page: 0. Global Page - Desktop
Copy Region Items: No
Copy Buttons: No
Copy Validations: No
Copy Processes: No
Copy Sub Regions: No
z Region Name Breadcrumbs
* Sequence 10
\v_Advanced
Parent Region - Select a Parent - v

" Display Point Page Template Region Position1

A e B Maala e

o =2

Figure 5-41. Confirming the copy operation

Reviewing the change in the Page Designer, notice that the Global Page now has the new breadcrumb
region, but the original breadcrumb region still remains on page 1. In running the application, you can see
the two breadcrumb regions shown in Figure 5-42. Note that the Copy feature doesn’t remove the existing
breadcrumb region.

96

Home

Home

APEX Issue Tracker

Figure 5-42. Redundant breadcrumb regions

To correct this duplication, do the following:

1. EditPagel.

CHAPTER 5 " APPLICATIONS AND NAVIGATION

2. Right-click the Breadcrumbs region name in the Rendering Tree and select

Delete from the context menu, as shown in figure 5-43.

B & ca & Gi
Rendering = 2= || Bv ¢
Y Page 1: Home Y Ho
Pre-Rendering
Regions PAGE HE
¢ Breadcrumb Bar PAGE NA
:
: = Attribute Create Region [
Breadcrumb i
Create Sub Region
Content Body M
APEX lssue Create Page Item e
Attribute Create Button <
Post-R
PeEacing Create Dynamic Action !
Duplicate a
N N
Copy to other Page... R
Expand All Below o
Collapse All Below ¥

Figure 5-43. Preparing to delete a redundant breadcrumb region from Page 1

97

CHAPTER 5 " APPLICATIONS AND NAVIGATION

3. Click the Save button in the upper-right area of the Page Designer.

Now, re-test the application. You should just see the Global Page version of the breadcrumbs region, as
shown in Figure 5-44.

= Help Desk

[Home
Home

APEX Issue Tracker

Figure 5-44. Completed migration of the breadcrumb region to the Global Page

Effectively, you have moved the management of the breadcrumb region to the Global Page. Any setting
changes to that region done on the Global Page are seen on all pages of the application without requiring
any additional work.

Breadcrumb Entries

As additional pages are added to the application, the page-creation wizard prompts for optional breadcrumb
settings. If they weren't set at the time the page was created, or if they need to be modified from their existing
settings, you can modify the data that drives the breadcrumbs in the Shared Components section of the
application.

It's possible to have several breadcrumbs in one application. A default breadcrumb with the name
Breadcrumb is created as part of the APEX Create Application wizard. This is the name of the grouping
of breadcrumb entries. APEX provides some utilities to see where breadcrumbs are used as well as easy
methods of editing entries.

To see the breadcrumb groups created, navigate to the Shared Components section and click the
Breadcrumbs option in the Navigation section. Figure 5-45 shows the main screen for listing the different
breadcrumb groups.

Breadcrumbs Hierarchy Grid Edit Exceptions Utilization History

Q~ Go | 88 | B Actionsv Reset bl

Breadcrumb

Figure 5-45. Breadcrumb groups available in the application

Clicking the group name displays the detailed entries in that group, as shown in Figure 5-46. The entries
can be modified independently here. As an application becomes larger, you may need to arrange the entries
into different breadcrumb groups.

98

CHAPTER 5 " APPLICATIONS AND NAVIGATION

Breadcrumb Breadcrumb Name or Target
EOELL G LEER Creats Breadcrumb Entry
Page Set

Go Actions

Name Sequence Page Parent

Home 10 1 {ruin

Figure 5-46. Detail of entries in a breadcrumb group

Lists

As the name implies, a list is a structure that APEX uses to keep a collection of data for links. The list
structure allows menus to be displayed consistently across numerous application pages, with easy
maintenance performed in the Shared Components area of an application. Don’t confuse navigation lists,
which we are discussing here, with lists of values (LOVs). Lists are a navigational structure with built-in
templates for displaying information in different ways. LOVs are used to support data entry, limiting the
options a user can enter.

There are two types of lists: static and dynamic. Static lists are made up of list items that aren’t data
driven but are instead entered at design time by the developer. Dynamic lists are data based, and the values
returned into the list are based on an SQL query.

List templates have a lot of capability. They support hierarchical lists, graphical bullets, dynamic
HTML, and highlighting for the current page. Lists can contain data in a parent-child relationship; some list
templates are specifically designed to display parent-child data. APEX themes contain a variety of templates
for lists, but if the behavior you're looking for isn’t already available, it’s possible to modify or create your
own list template to display and behave as desired.

As briefly mentioned earlier in this chapter, the new Universal Theme uses static lists instead of Tabs for
navigation. A list named Desktop Navigation List is created to hold the navigation for the site, and a special
List template built into the Universal Theme is used to display the list, depending upon some application-
level attributes.

Whether using lists or tabs, as you navigate through the page-creation wizards, APEX will ask if you
wish to create a navigation entry for the page you are creating. If you choose to create a new navigation entry
while using the Universal Theme, a new list entry is created for you.

Although we could let the page-creation wizard create all of the list entries for us, you're going to create
two entries in the list for pages that don’t exist yet to show you how it can be done manually. Don’t worry—
you'll create those pages in the next few chapters. Here’s the process to follow:

1. Navigate to the Shared Components section of your application.
Locate and click the Lists entry under Navigation.

Locate and click the Desktop Navigation Menu list in the resulting report.

> N

To create a new list entry, click the Create List Entry button shown in
Figure 5-47.

99

CHAPTER 5 " APPLICATIONS AND NAVIGATION

Lists List Details Unused Conditional Entries Utilization History
| I |
List || Deskiop Navigation Menu | =

Q- Go Actions™

Sequence 1 Name Parent Entry Target Conditional

10 Home - f7p=8APP_ID.:1:8APP_SESSION.::ADEBUG.:

Figure 5-47. Creating a new list entry

Grid Edit Edit List Croate List Entry >
7

Level

Autharization Scheme Copy
J]

1-1

The resulting page presents all the options available for a list entry. A lot of functionality is built into the
lists structure. The key items you're interested in are shown in Table 5-1. Fill out the page shown in
Figures 5-48 and 5-49 using the values from Table 5-1. Leave any other values at their defaults.

Table 5-1. Values to Use for the First List Entry

Section Value Entry

Entry Parent Home

List EntryLabel =~ Submit a Ticket
Target Page 2

Clear Cache 2

| Entry
List: Desktop Navigation Menu
Parent List Entry Home

Sequence 20

Image/Class ~

Attributes)
Alt Attribute

* List Entry Label Submit a Ticket

Figure 5-48. Choosing a parent list entry and setting the label

100

CHAPTER 5 " APPLICATIONS AND NAVIGATION

Target
k Target type Page in this Application
“Page 2 ~
reset pagination for this page
Printer Friendly
Request

Clear Cache 2

Set thesa items ~
With these values ~
URL Target

Figure 5-49. Target definition

5. Once you've finished your entries for the first list item, scroll to the top of the
page and click the Create and Create Another button. This brings you back to
the same page and allows you to add another list entry. Use the information in
Table 5-2 to create the second list entry.

Table 5-2. Values to Use in the Second List Entry

Section Value Entry

Entry Parent Home

List EntryLabel ~ Contact Us
Target Page 3

Clear Cache 3

6. Click Create List Entry to save your changes.

You should now have a list with three entries in it, as shown in Figure 5-50. The List Details tab shows
some important information in a single view. The Sequence value identifies the order in which the items
are listed when using an unordered list type. Some list types are classified as ordered, in which case they’re
sorted by name alphabetically. The Target value is the construction of a URL that includes the page to
navigate to as well as a clear-cache instruction. Several of the declarative forms construct a URL based on the
inputs provided, in the same way as for the list entry.

101

CHAPTER 5 " APPLICATIONS AND NAVIGATION

Lists List Detalls Unused Conditional Entries Unilization History

List Desktop Navigation Menu Resat Grid Edit Edit List Croate List Entry >
Qv Go Actions v
Sequence 1 Name Parent Entry Target Conditional Updated Level Authorization Scheme Copy
10 Homa = f7p=8APP_ID.:1:8APP_SESSION.:4DEBUG.: = = 1
20 Submit a Ticket Home f7p=8APP _ID.:2:ASESSION.: - ADEBUG.:2::: - 36 seconds ago 2 - ri
30 ContactUs Home fip=8APP_ID.-3:4SESSION.::4DEBUG.:3::: - Now 20| o= ®

1-3
Figure 5-50. List entries at a glance

Alist, as a shared component (unless it is designated as the default navigation list for the UI), doesn’t
display in an application directly. Normally, a list region must be configured on a page in order for the list to
be seen by the user. APEX has a template type defined specifically to support lists. The list templates contain
all the intelligence required for dynamic lists and options for display. When you're creating a list region, the
template choice can be set, and it can be modified through the region settings.

In our case, the list entries you created will be displayed as part of the navigation list region that is part
of the Universal Theme.

Running your application now should result in the list entries you created appearing on the left side of
the screen as part of the Navigation menu (Figure 5-51). Clicking either link generates an application error.
This is expected: you've asked the application to link to pages that don'’t exist yet.

Help Desk

Home

Submit a Ticket

Contact Us

Figure 5-51. Navigation menu with new list entries

Lists of Values

One of the fundamental benefits of writing an application on top of a database architecture is the ability to
enforce data quality. LOVs are an APEX component that can be mapped to different item types, including
Select Lists, Multiple Select Lists, Checkboxes, and Radio Groups. These types of structures help ensure that
data collected through transactions is consistent. As with lists, there are two types of LOVs in APEX:

e Static: A set list of options in APEX

e Dynamic: Based on data in the database returned via SQL

102

CHAPTER 5 " APPLICATIONS AND NAVIGATION

LOVs can be defined as shared components either at the application level or at the item level. Figure 5-52
shows an item-level attribute definition for a static LOV. An LOV used more than once should be written
as a shared component. This allows the maintenance of that LOV to be centrally located with the Shared
Components. If an LOV is created at the item level, it’s easy to convert it to a shared LOV by using a utility
that APEX provides. When viewing the LOV Shared Components, an LOV that is locally defined can be
edited and converted to a Shared Component LOV.

¥ List of Values

r
Type |Static Values
r

Static Values al

STATIC:Displayl;Returnl,Display2;Return2

Figure 5-52. An item-level LOV with static options

Static List of Values

A static list of values is simply a set of display and return value pairs. This type of list is normally short and
unchanging. When you define a static list of values at the item level, there are two types of data options:

e STATIC: Entries are automatically alphabetized.
e STATIC2: Entries render in the order in which they’re entered.

The syntax for specifying a static LOV is as follows:
TYPE:DISPLAY;RETURN,DISPLAY;RETURN,...

The TYPE may be either STATIC or STATIC2.

If you wish the display value and the return value for a given entry to be the same, omit the semicolon
and specify only one value. For example, the second item in the following example is a single value for both
display and return:

TYPE: VALUE1,VALUE2,VALUE3,...

The return value in an LOV is saved as the value of the associated form item. In static lists, using the
semicolon as the value of an entry may cause issues with parsing the list.

The following is an example of a static list. Commas separate the list items. Each list item is composed
of a display value and a return value, with a semicolon separating those two values:

STATIC:C;1,A;2,D;3,B;4,

When you display the values in this list, you see only the display values. Because the list is type STATIC,
the values are displayed in alphabetical order:

N w@>

103

CHAPTER 5 ' APPLICATIONS AND NAVIGATION

Next is an example of a STATIC2 list. Notice that the entries are specified in the same order as before:
STATIC2:C;1,A;2,D;3,B;4,

However, this time the values are displayed in their order of definition. They are not sorted
alphabetically:

w o >N

Shared-component static LOVs have more options than item-level static LOVs. Due to their shared nature,
conditions and build options can be configured. These can be edited after the list has been created. Because
the lists are stored differently as shared components, it’s possible to use a semicolon in the item value.

Dynamic List of Values

As with static LOVs, dynamic LOVs have a display and return value pair requirement. The difference is
that the values are obtained through an SQL query. The SQL query you write must return two columns.
If the columns are the same, you need to use aliases to distinguish a display value and a return value.
You must also use an alias if you're using a concatenated string as a column. Dynamic LOVs can also use
session variables or values currently being used in the application. This gives dynamic LOVs flexibility to
dynamically change what is offered during runtime.

The example application needs two LOVs to support the selection of user names. In preparation for
building your form pages, create an LOV to support the names of the users and the technicians in your Help
Desk system:

1. Navigate to the Shared Components section of the Help Desk application, then
go to the Other Components section shown in Figure 5-53, and click the Lists of
Values link.

Other Components

List of Values
W
Plug-ins

Component Settings

Shortcuts

Figure 5-53. Other Components options

104

CHAPTER 5 " APPLICATIONS AND NAVIGATION

2. Click the Create button to create a new LOV.

3. Choose From Scratch as the method of creating your LOV, as shown in
Figure 5-54.

Create List of Values x
O

Source

A List of Values is a static or dynamic definition used to display a
specific type of page item, such as popup lists of values, a select list, a
check box, a radio group, or multiple select lists.

Create List of Values: o From Scratch
As a Copy of an Existing List of Values

Figure 5-54. Creating an LOV from scratch

4. Click Next.
5. Enter TECHS as the Name value and choose Static as the Type, as shown in
Figure 5-55.
Create List of Values x
° ©
Name and Type

Static lists are based on predefined pairs of display and return values.

Dynamic lists are based on a SQL query you write that selects values
from a table.

" Name TECHS

Type: © Static

Dynamic

Figure 5-55. Specifying a list as static

105

CHAPTER 5 ' APPLICATIONS AND NAVIGATION

6. Click Next.

7. Enter the values shown in Table 5-3 into the form. Add your own name to the list!

Table 5-3. Display Attributes for the LOV

Display Value Return Value
Scott SCOTT
Doug DOUG
Karen KAREN
Martin MARTIN
Patrick PATRICK
Tim TIM

(Your Login Name) (YOUR LOGIN NAME)

8. Click Create List of Values when you're finished.

Now that you've created a static LOV; let’s include a second one that uses an SQL query to derive the list
of values:

9. Repeat steps 1 through 4.
10. Create a second list named USERS, selecting the Dynamic option. Click Next.

11. Locate the book supplemental file ch5_lov.txt thatincludes the SQL query text.
Enter the SQL query for the LOV source.

12. Click Create List of Values.

You should now have two LOVs. Don’t worry if you made a mistake. All the settings can be modified—
simply click the name of the LOV you want to modify.

Summary

In this chapter, you created the basic shell of an application and several of the supporting objects that you
will use in the upcoming chapters. These items have been created as a result of planning that was done
prior to starting to create the application. Depending on your situation, the amount of planning you do for
your own application will vary. The shared components outlined here can be created at any time during the
development process. In the next section, you will start using some of the key structures outlined here.

106

CHAPTER 6

Forms and Reports: The Basics -

Now that you have the database objects and the base application in place, you can get to the real work of
building pages in your application. Most applications contain a series of forms, reports, charts, and other
elements designed to display, edit, and collect data.

This chapter focuses on basic forms and reports. These are the simplest, most standard types of forms
and reports in APEX. They're most often created by using the APEX wizards, which create all the elements of
a form or report for you.

In the sections that follow, you will learn how to use the APEX wizards to add pages to your Help Desk
application. You will create some basic forms and reports on the Tickets table; you will also look at the
elements created by the wizards for your working forms and reports.

APEX Forms

Forms are used to display, edit, and collect data, which is then sent back to the database for processing.
Forms can interface with tables, views (via “instead of” triggers), procedures, and web services.

An APEX form is actually a collection of APEX objects acting together as a single, cohesive unit to
perform insert, update, and delete operations on data elements. An APEX form generally consists of a
region, one or more items, one or more buttons, and one or more processes that handle interactions with the
database. The APEX form wizards create all the objects necessary for a fully operational form.

Note Once a form is generated, the objects in it aren’t logically associated in any way except that they
collectively make a complete working form. Although it’s possible to alter or delete individual elements, doing so
may cause the form to not work properly if an error is introduced; thus, doing so is not recommended.

The APEX form wizards listed in Figure 6-1 are the fastest, most effective, and most accurate way to
create APEX forms. The wizards guide you through a series of steps, collect the information required for the
form type, and then generate all the required items, processes, and buttons. Using the wizards frees you from
the tedious and error-prone task of individually creating each component. After a wizard creates a form, you
can, and likely will, make modifications and enhancements to the resulting components to tailor the form to
your specific requirements.

107

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Create Page x

Figure 6-1. APEX Create Page wizard showing form options

The following are some of the form types that you can create using the wizards listed in Figure 6-1:

e Form on a Table with Report: A form built on the columns of a table or view, having
one item for each table column and processing a single row of data at a time, plus a
report on the contents of the table or view, with navigational elements between the
report and form pages.

e Form on a Table or View: A form built on the columns of a table or view, having one
item for each table column and processing a single row of data at a time.

e Master Detail Form: A form on a pair of tables having a master-detail relationship.
The APEX Master Detail Form Wizard creates all the data, processing, and
navigational elements required for managing master-detail data.

e Tabular Form: A multi-row, multi-column form (like a spreadsheet) that allows the
editing of multiple rows and columns of data at once.

e Formon a Procedure: A form based on the parameters of a procedure, typically to
collect values for passing in to a procedure for subsequent processing.

e Formona SQL Query: A form built on the results of a SQL query. This is a very
powerful form construct due to its flexibility.

e Summary Page: A display-only form showing selected items from an existing input
form page. A summary page is often used in building a confirmation page for a
wizard.

e Form on Web Service: A form on the arguments of a web service.

e Form and Report on Web Service: A single-row form on the arguments of a web
service with a corresponding report of all rows of data, including navigational
elements for moving from report to form and back.

108

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

If you look at the available APEX form wizards, you can see that several of them create accompanying
reports (the Form on a Table with Report and Form and Report on Web Service Wizards). It's a common
practice to use a report on a table, view, or web service to locate a particular row of data and then edit that
data in a form on the same table, view, or web service. Some wizards simply create both the report and
the form for you, including all navigation elements and database-transaction processes required to make
everything work.

Form on a Table

One of the most common types of form in APEX is the form on a table. The APEX Form on a Table wizard
automatically creates and maps APEX items to database columns, making it trivial to quickly create forms
for database table entry and updates. As a developer, you can then modify the different types of controls
for each column. All of the supported HTML widgets (text fields, text areas, select lists, radio groups, check
boxes, and so on) are available, as well as several APEX-specific ones. The best way to understand just what
the APEX Form on a Table wizard does is to use it, so let’s dive in and create a form on a table.

Creating a Form on a Table

In this section you will create Page 2 of your Help Desk system and add a form to it. This form will allow the
user to create a new ticket by inserting a row into the TICKETS table. You can limit which DML operations a
form in APEX can perform. In this case, you restrict it to only performing inserts.

The Form on a Table wizard walks through all the steps required to generate a form on a table: selecting
the parsing schema, selecting the table on which to base the form, selecting the columns to include and edit,
assigning region and form titles, and specifying column headings. Begin as follows:

1. Navigate to your application’s development home page. This is the page that lists
all of the pages in your application.

Click the Create Page button in the upper right of the screen.
Select Form, and click Next.

Select Form on a Table or View, and click Next.

LA

Set Table/View Owner to your schema, and select TICKETS (table) for
Table/View Name, as shown in Figure 6-2. Click Next.

Create Form on Table x
@

Table / View

view. Identify the schema o

Tabie / View Owner APRESS

" Tabie/ViewNeme | TICKETSfable) | <

Figure 6-2. Entering the schema and table name

109

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

The next step allows you to set some details about the page and region that will be created as a result of
the wizard. The Page Number can be set to anything you wish, but it must be unique within an application.
The Page Name sets the text that appears in the browser tab when the application is run, and the Region
Title sets the text that displays in the region’s title area.

The Page Mode dictates whether the page you are creating will be a normal APEX page or one of the two
types of dialogs now built in to APEX 5.0: modal or non-modal. Modal dialogs disallow interaction with the
page underneath the dialog, while non-modal ones allow the user to see and interact with the underlying
page.

The region template dictates how the region container is visually rendered. Each APEX theme has a
number of templates available, but you'll find that you use the Standard template the most. Continue as
follows:

6. Enter 2 for Page Number, as shown in Figure 6-3. Enter Create a Ticket
for both Page Name and Region Title. Set the Page Mode to Normal. Set
Breadcrumb to Breadcrumb. When the page refreshes, set Parent Entry to
Home and click Next.

Create Form on Table X
o ©
Page and Region
Use this page to specify page and region information.
" Page Number 2

* PageName Create a Ticket
" PageMode Modal Dialog
" Region Tile Create a Ticket
Region Template Standand
Breadcrumb Breadcrumb
Parent Entry No parent entry

Entry Name Create a Ticket

Figure 6-3. Specifying page, region, mode, and breadcrumb information

110

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Next, you get to choose how this page relates to the menu system you've already defined, if it does at all.
We've already created the entries in the Navigation List for these pages, so we'll use those as we create the

page:
7. For Navigation Preferences (Figure 6-4), select Identify an existing navigation

menu entry for this page. When the page refreshes, set Existing Navigation
Menu Entry to Home, and then click Next.

(] [&

Navigation Menu

Navigation Preference Do not associate this page with a navigation menu entry
Create a new navigation meny entry

D Identify an existing navigation menu entry for this page

: Existing Navigation Menu Entry Home

Figure 6-4. Specifying navigation options

APEX 4 introduced the ability to use ROWID as a primary key. This comes in handy when you're dealing
with a table that has a multi-column natural primary key, but the table already has a single-column primary
key defined, so you'll use that:

8. Set Primary Key Type to Select Primary Key Column(s), ensure that Primary
Key is set to TICKET_ID, and click Next.

The primary key of the table is based on a sequence within the database, and there is already a trigger
in place that fills the primary key with the next sequence value, if the primary key for the incoming record is
null, as follows:

111

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

9. SetSource Type to Existing Trigger, as shown in Figure 6-5, and click Next.

Create Form on Table x
® © [] @

Primary Key

Select the method by which the primary key Is populated.

gger to populate the primary key.

* Choose Existing Trigger if there is already a tri

+ Choose Custom PL/SQL Funct om PL/SQL logic to generate the primary key value.

+ Choosa Existing Sequence if an existing sequence will be used 10 generate the primary key.
Primary Key Golumn 1: TICKET_ID

.
Source Type:) Existing trigger
Custom PLISOL function

Existing sequence

» Custom PL/SQL Function Example

» Existing Triggers

Figure 6-5. Specifying the primary key population option

Next, specify the columns that will be visible and editable on the form. By default, all the columns in the

chosen table appear in the selected column. However, for this simple form, you want to restrict the columns
the user can see:

10. Using the shuttle, make sure SUBJECT, DESCR, CREATED_BY, and STATUS_ID are the
only columns selected, as shown in Figure 6-6, and click Next.

Create Form on Table x
© ©] © @
Columns

Select the columns to include on the form.

Swect Column(s) ASSIGNED_TO (Varchar2) 1) [SUBJECT (Varchar2) B
CREATED_ON (Date) DESCR (Vaschar2)
CLOSED_ON (Date) % |/CREATED_BY (varchar2) T
STATUS._ID (Mumber)

Figure 6-6. Selecting the columns to include

112

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Not all forms allow people to update or delete data. Some are simply data-entry forms. In this case,
you want un-authenticated users to be able to submit a ticket, but you don’t want them to be able to edit or
delete those tickets. The next step of the wizard allows the developer to choose which actions are available to
the end user and to name the buttons related to those actions.

Every form should have a Cancel button that allows the user to abort any actions or data entry. But the
rest of the buttons are optional:

e Create button: Saves a new record

e Save button: Saves updates to an existing record

e Delete button: Deletes an existing record
Continue now with creating the form:

11. Enter Cancel for Cancel Button Label and Create a Ticket for Create Button
Label. Set Show Save Button and Show Delete Button to No, as shown in
Figure 6-7, and click Next.

Create Form on Table x

] o [© (] @

Cancel Button Label Cancel

Show Create Bution Yes
Create Button Label Create a Ticket
Show Save Button No

Show Delete Button No

Cancel
Figure 6-7. Specifying the buttons to display

When the user enters a ticket and clicks a button to either cancel data entry or create the new ticket, you
need to specify what happens next. Does APEX stay on the same page? Does it return to the home page?

113

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

In this instance, you want the user to be redirected to the home page no matter which choice they make:

12. Set both Branch here on Submit and Branch here on Cancel to 1, and click
Next. See Figure 6-8.

Create Form on Table x
© ©) (] ()] @

Branching

Select the pages to branch to after the page processing is submitted or cancelled.
* Branch here on Submit 1 ~

* Branch here on Cancel 1 ~

Figure 6-8. Specifying branching for Submit and Cancel

As with most wizards, you're presented with a final page that summarizes your choices. At this point
you can use the Previous and Next buttons to work your way back and forth through the wizard steps to alter
any of your choices. Then do the following:

13. Click Create to complete the wizard.
14. Runyour application.

Congratulations! You've just created a fully operational form on the TICKETS table. The form should look
similar to that in Figure 6-9.

Home /

Create a Ticket

Create a Ticket

Created Sy

Swws ld

Figure 6-9. Running the form on the TICKETS table

114

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Notice that the form region is labeled as you specified in step 6, the form contains fields for the four
columns you selected in step 10, and the Create a Ticket button is labeled as you specified in step 11. Also
notice that the four fields are each created as the default element type specified in the UI defaults for the
TICKETS table that you created in Chapter 4. The help text you specified for each column is there, and it pops
up in a new window when you click the question mark icon at the end of the field. The Cancel button brings
you to the home page—page 1, as you specified in step 12. APEX did a lot of work for you!

Modifying a Form on a Table

The APEX wizards handle most of the work of creating a form for you. However, it’s rare that you won’t have
to make some minor changes to what the wizard creates. Now that you have the Create a Tickets form on
page 2 of your application, you can make a few changes to polish it up a bit.

Changing the Label Templates

You'll change the label templates for P2_SUBJECT and P2_CREATED_BY (the items that correspond to the
SUBJECT and CREATED_BY table columns) to Required with Help. Use of the Required with Help label
template indicates to the end user that this is a required field on the form. However, it doesn’t make the field
itself mandatory. You will do that later.

You'll also reduce the width of P2_CREATED_BY so it doesn’t take up as much space. Begin as follows:

1. Edit Page 2 of the application.

2. Edit the item P2_SUBJECT by clicking its name in the Rendering tab of the Tree
Pane.

3. Inthe Property Editor, scroll to the Appearance attribute group, as shown in
Figure 6-10, and set Template to Required, and click Save.

¥ Appearance

Template . Required

Template Use Template Defaults
Options

CSS Classes s
Format Mask N
Width 32 characters

Value
Placeholder

Figure 6-10. Modifying the label templates

115

http://dx.doi.org/10.1007/978-1-4842-0466-5_4

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

¥ Appearance

Template

Tempilate
Options

G55 Classes

Format Mask

Width

Value
Placeholder

Edit the item P2_CREATED_BY by clicking its name in the Rendering tab of the
Tree Pane.

In the Property Editor, scroll to the Appearance attribute group, as shown in
Figure 6-11. Set Template to Required, and the Width to 20, then click Save.

Required

Use Template Defaults

20 characters

Figure 6-11. Setting the display attributes

Next, you want to hide the P2_STATUS_ID item from the user, because you don’t want the user to
change this value. You do, however, want all new tickets to be created with a default value of OPEN. Because
you can’t guarantee which STATUS_ID maps to which STATUS, you can call a simple function and pass in the
STATUS. This function, in turn, returns the corresponding STATUS ID, which is set as the default value for
P2_STATUS_ID:

1. Edit the item P2_STATUS_ID by clicking its name in the Rendering tab of the
Tree Pane.
2. Inthe Identification attribute group, set Type to Hidden.
3. Inthe Default attribute group shown in Figure 6-12, set Type to PL/SQL
Function Body and set the default value to RETURN get_status('OPEN');. This
function was created as part of the script run in Chapter 4.
4, Click Save.
¥ Default
Type PL/SQL Function Body
PL/SQL Function Body 2]

RETURN get_status('OPEN");|

Figure 6-12. Specifying a default value

116

http://dx.doi.org/10.1007/978-1-4842-0466-5_4

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Next, you want to set page 2 to be a public page. You want any user—authenticated or not—to be able to
access this page:

1. Edit the page attributes for Page 2 of your application by clicking its name (Page 2:
Create a Ticket) at the top of the Rendering tab of the Tree Pane.

2. SetPage 2 to be a public page, and click Apply Changes. Refer back to Chapter 5
for detailed steps.

Finally, you need to make sure users enter values for the Subject and Created By fields. There are two
ways to make a field mandatory in APEX. For demonstration purposes you'll use a different method for
each field.

Making the Fields Mandatory

For the Subject field, you'll create a validation. Although a validation takes more steps, it gives you more
control over how and when it’s performed. Here’s what to do, first for the Subject field and then for the
Created By field:

1. Edit Page 2 of the application.

2. Create a new validation by switching to the Processing tab of the Tree Pane then
right-clicking the Validating node in the tree and selecting Create Validation, as
shown in Figure 6-13.

B i ¢ on
Processing |82 8«
After Submit
| Proces Create Branch
Pry
Create Wﬂ
Expand All Below
After | Collapse All Below
Bri
Go To Page 1
AJAX Callback

Figure 6-13. Choosing to create a new validation

117

http://dx.doi.org/10.1007/978-1-4842-0466-5_5

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

You will see a new node in the validation tree that is highlighted and has a red X next to the name. This
indicates that the validation has been created, but that there are attributes that must be filled in. Looking at
the Property Editor, you'll see a number of attributes highlighted in red, as seen in Figure 6-14.

e g ——
£ & vty ore TOO 4 A4 DE =
ORACLE A s Moo st
| o oo 2 o - A
——'Y Page e oo S——
Covate 2 Tickat
e o
- [—— - =
L -
30 To Page 1
.- - N
O o

Figure 6-14. A new validation that needs to be completed

We'll now fill out the required attributes for our validation, as seen in Figure 6-15:
3. Inthe Identification attribute group, set the name to P2_SUBJECT is NOT NULL.

4. Inthe Validation attribute group, set the Type to Item is NOT NULL, then using
the pop-up select list, set the Item to P2_SUBJECT.

5. Inthe Error attribute group, set the Error Message to #LABEL# must have some
value and set the Associated Item to P2_SUBJECT.

6. Click Save.

118

Validation
=Bl == S
¥ Identification
r
Name P2_SUBJECT is NOT NULL
¥ Execution Options
-
Sequence 10
¥ Validation
Tabular Form - Select - &
b
Type temis NOTNU 2 =
r
Item P2_SUBJECT ~
r r
Always Yes | No
Execute
¥ Error
r
Error Message 2l
#LABEL® must have some value.
r
Display Inline with Field andin £
Location
Associsted | P2 SUBJECT | C| >
o b v ™

Figure 6-15. Entering the details for a new validation

CHAPTER 6

FORMS AND REPORTS: THE BASICS

Next, use the second method to make the Created By field mandatory. To do this, simply set an attribute

of the input item:

7. Switch to the Rendering tab of the Tree Pane and edit P2_CREATED_BY.

8. Inthe Property Editor, navigate to the Validation attribute group shown in

Figure 6-16, set Value Required to Yes, and click Save.

¥ Validation
r
Value Yes No
Required
Maximum 50
Length

Figure 6-16. Making a value required

119

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

If you check the Processing tab of the tree pane, you'll see that no new validation has been created.
That is because you used the item-level attribute instead of creating a full validation. The main difference
between an item-level and a full validation is that with the item-level validation, you can’t conditionally
control when the attribute is applied, and you don’t have direct control over the error message that is
displayed.

Go ahead and run the application again. At this point, you should be able to enter new tickets into the
system but not see them anywhere outside of SQL Workshop.

Looking Behind the Scenes

Now that you have a working form, let’s look at just what the APEX Form wizard built in order to understand
a bit more about how your form works. If you have installed the Web Developer Toolbar add-in (available for
both Chrome and Firefox), you can use the Form ä Display Form Details option to display the form
details. Figure 6-17 illustrates the Create a Ticket form with the form details exposed.

Create a Ticket
<input name="p_arg_nomes">RFRIELYLELEYL KB cinput 1d="P2_TICKET_ID" name="p_t@1"> <input

USRI I BT T TR 123155269875280532_j1

subject REREEE T R <input id="P2_SUBJECT" maxlength="255"
ame="p_t02" size="32" type="text">

Descr 123156026637280546
<textarea id="PZ2_DESCR" maxlength="4000" name="p_t83">

Createq oy QERIECELENETREN LS gl <input id="P2_CREATED_BY" maxlength="5@"

ne="p_t04" size="20" type="text">

RERE RPN Il <input 1d="P2_STATUS_ID" name="p_t@5"> k] <input|
e T e e 123156889556280548_L
<button id="B123154020666280529"> e button id-“8123153969355233523"»

Figure 6-17. Form on the TICKETS table with form details exposed

Note The Web Developer Toolbar add-in is a free web-development tool, written by Chris Pederick, that
lets you inspect various aspects of a web page. To learn more about Web Developer, visit
http://chrispederick.com/.

120

http://chrispederick.com/

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

The highlighted input tags display the input identifier and name for each field of the form. Both are unique
for each form field. The input identifier is the column name prepended with the page number. The input name
identifies the element names that APEX uses internally to process data in the form. Note that the columns you
didn’t choose to display in the form, TICKET_ID and STATUS_ID, are still present in the page’s HTML.

A look behind the scenes tells you more. Edit Page 2 to view the elements that make up the new form.

Figure 6-18 shows three of the tabs from the tree pane: Rendering, Processing and Shared Components.
The Rendering tab contains APEX objects required for page rendering. The Processing tab contains objects
required for page processing, such as validations, processes, and branches. The Shared Components tab
contains APEX objects that are shared across pages, such as tabs, lists of values, breadcrumbs, templates,
and security schemes.

Rendering e=l 0= = Processing P 02 =5 Page Shared Components S
Page 2: Create a Ticket
Pre-Rendering
Before Header
After Header
Processes
Fetch Row from TICKETS Processes & References
Before Regions Process Row of TICKETS Breadcrumbs
reset page Braadcrumb
derumb Bar After Processing {avigation Menu
| Content Body | Branches = Desktop Navigation Menu
| Create a Ticket | GoToPage 1
| Attributes | AJAX Callback Page
ems Standard
| P2_TICKET_ID | Page tem
| |
: P2_SUBJECT : Required
Validations Optional
P2_SUBJECT is NOT NULL Button
P2_DESCR Text
P2_CREATED_BY Region
< P2_STATUS_ID Title Bar
| 10 | Standard
| |
| | Mavigation Me
| |
Side Navigation Menu
Post
L .

Figure 6-18. Elements of a form as viewed from the Page Builder’s various tree panes

For your new Create a Ticket form, in the Rendering tab, you see that the wizard has created one item
for each of the columns from the TICKETS table that you selected via the wizard. There are also two buttons
called Cancel and Create, and a Fetch Row from TICKETS process. This process is an Automated Row Fetch
process, which does exactly what its name says: it fetches a row from the designated table into the current
form. The attributes of the Automated Row Fetch process specify the table owner, the table name, the
primary key column(s), success and failure messages, and a condition.

121

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Notice that the TICKET_ID item is present in the tree but isn’t rendered on the form, nor is it present
in the Grid Layout. It’s visible in the Display Details view (Figure 6-17) of the form as the first element on
the page, with no visible element associated with it. TICKET_ID is a hidden item. APEX hidden items exist
to hold a value, but although they’re rendered on the page, they aren’t visible to the user. In this case, the
hidden TICKET_ID column holds the primary key value for the TICKETS row. As the primary key, TICKET_ID
is used by the APEX processes to pull data from the database and to process inserts, updates, and deletes
on a TICKETS row. Because you don't want the end users to edit the primary key, APEX automatically hides
it for you.

In the Processing tab, you have a Process Row of TICKETS process, a Reset Page process, and a Go To
Page 1 branch. The Process Row of TICKETS process does just that: it processes one row of the TICKETS table
using the values from the items that correspond to the columns of the TICKETS table. This process fires when
the user clicks the Create button. The Reset Page process clears the items on the page. It fires when the user
clicks the Cancel button.

In the Shared Components tab, you need to expand the Navigation Menu tree node to see that this
page uses the Desktop Navigation Menu. Expanding the Breadcrumbs region shows the Breadcrumb object.
Under Templates, you see that your form uses the Standard page template, the Title Bar and Standard
templates, two different Page Item templates, and the default Button template.

All APEX form wizards create items, buttons, and processes, but in different combinations to suit the
specific needs of the form type. The other APEX form wizards perform essentially the same way, with slight
differences in process types and navigation objects so as to accommodate the underlying data source: table
or view, procedure, query, or web service. Next, let’s look at a form on a procedure.

Form on a Procedure

Another way to create a form in APEX is to create it based on the parameters of a PL/SQL procedure. Instead
of the traditional DML processes, APEX calls the associated procedure and executes whatever logic is
embedded within it. This method is also referred to as using table APIs, because this is the option to use if all
access to tables in your workspace schema must be done through a table API.

Creating a Form on a Procedure

The process to create a form on a procedure is almost identical to that of a form on a table. You create a
new page containing a form on the CONTACT_US stored procedure that was created as part of the exercises in
Chapter 4, which enables users to contact you through the Help Desk application:

1. Navigate to your applications development home page.
Click the Create Page button in the upper right of the screen.
Select Form and click Next.

Select Form on a Procedure and click Next.

A

Set Procedure Owner to your schema, enter CONTACT _US for Stored Procedure
Name, as shown in Figure 6-19, and click Next.

122

http://dx.doi.org/10.1007/978-1-4842-0466-5_4

CHAPTER 6

Create Form on Procedure x
2

Procedure

dentify the databasa schema that owns the procadura on which you wish to build a form.
" Procedure Owner APRESS

" Stored Procedure Name CONTACT_US ~

o

Figure 6-19. Creating a form on a stored procedure

FORMS AND REPORTS: THE BASICS

6. Inthe top section of the page, enter 3 for Page Number, enter Contact Us for
both Page Name and Region Name, and set Breadcrumb to Breadcrumb.
When the region refreshes, select Home (Page 1) to set it as the Parent Entry, as

shown in Figure 6-20, and click Next.

Create Form on Procedure X
@ O
Page and Reglon
" Page Number 3
" PageMame Contact Us
" PageMode Nomal
Region Tempilate Standard
* Region Mame Contact Us
Submit Button Label Submit
Cancel Button Labal Cancel
Breadcrumb Breadcrumb
Parent Entry Home (Page 1)

Entry Name Contact Us

Figure 6-20. Selecting the breadcrumb parent entry

123

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

7. For Navigation Preferences, select Identify an existing navigation menu entry
for this page. When the page refreshes, set Existing Navigation Menu Entry to
Home, then click Next.

8. Leave Invoking Page and Button Label blank, and click Next.

9. Enter 1 for both Branch here on Submit and Branch here on Cancel, as shown
in Figure 6-21. Then click Next.

Create Form on Procedure X
[} [} @ @ @
Branching

Select the pages to branch to after the form is submitted or cancelled.

" Branch here on Submit 1 ~

.
Branch here on Cancel 1 Ea)

< Cancel

Figure 6-21. Specifying branching options

10. Inthe dialog in Figure 6-22, set the Label for P_FROM to From. Set the Label for
P_BODY to Body. Set the Display Type for P BODY to Textarea, and then
click Next.

Create Form on Procedure X
[} [} @ @ @ &

Arguments

Select the procedure arguments you want to include in the form. You can also define item prompts and default values.

Argument Label Include Default Display Type
P_FROM From ves B TextFied |
P_BODY Body ves | Textarea o)

< Cancel

Figure 6-22. Specifying procedure arguments

11. Click Create.

124

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Modifying a Form on a Procedure

Once again, the wizard has done most of the work, but you have a few minor changes to make before your
form on a procedure is complete. You want both the From and Message values to be required, so you need to
change their label templates and set their Value Required attribute to Yes. This time we're going to use a new
feature in APEX 5.0 that allows us to edit the properties of multiple components at once. Do the following:

1. Edit Page 3 of the application.
2. Select P3_FROM by clicking its name.

3. Holding the CTRL key (or Command key on Mac) select P3_BODY by clicking its
name. At this point both elements should be selected.

Now, if you look at the Properties Editor, you'll see that there are several options that have a blue
background and a grey Delta (A) symbol just to the left of the label. This indicates that the components you
have selected have different values for these options. It’s simply a visual clue so that you know that the fields
may not in fact be blank, but that APEX can’t display the varying values between the components.

We'll continue by changing the common attributes as follows:

4. Inthe Appearance attribute group, change Template to Required.
5. Inthe Validation attribute group, change Value Required to Yes.

6. We now want to change a few attributes only for P3_BODY. So we’ll have to de-
select everything else so we don’t accidentally change their attributes as well.
Remember, as long as you haven'’t clicked the Save button, you can always use
the Undo button to step back through what you've done. To select P3_BODY and
de-select everything else:

7. Inthe Rendering tab of the Tree Pane, click on P3_BODY.
8. Inthe Appearance attribute group, set Width to 80 and Height to 5.

Next, set page 3 to be a public page. You want any user—authenticated or otherwise—to be able to send
you a message through the Contact Us page:

9. SetPage 3 to be a public page. Refer back to Chapter 5 for detailed steps.
Finally, modify the process that was created to include a success message:
10. Switch to the Processing tab of the Tree Pane.
11. Edit the process Run Stored Procedure by clicking its name.

12. Inthe Success Messages attribute group, enter the following for the Success
Message:

Your message has been sent.
13. Scroll to the top and click Save.

Run your application and test the Contact Us form. Each time you submit a record, an email is sent
to info@example. com. If you want to change the destination address for the email, you can use the SQL
Workshop’s Object Browser to edit the CONTACT_US procedure.

125

http://dx.doi.org/10.1007/978-1-4842-0466-5_5

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Looking Behind the Scenes

From the user perspective, there is no indication that the form you've just created was created on a
procedure. Looking in the Page Builder, the objects in the Page Rendering sections are similar to what you
saw in your form on a table on page 2, but not exactly. Let’s take a look to see what makes your form on a
procedure different from the form on a table. Edit page 3 of your application. The different tabs of the tree
pane are represented in Figure 6-23.

=] & ca éb =} & & = bid ca &

Rendering i=| 22| B~ Processing i1z B Page Shared Components s~

Pre-Rendering

After Processing

mbs

Branchas

tems Go To Page 1 Breadcrumb
P3_FROM AJAX Callback Navigation Menu
Pa_BODY Desktop Navigation Menu
Region Buttons Templates
CANCEL Page
SUBMIT Standand
Post-Rendaring Page item
Fequired
Button
Tt
Region
Tithe Bar

Standarnd
Navigation Menu

Side Navigation Menu

Figure 6-23. Elements of a form on a procedure as viewed from the Page Builder’s various tree panes

In the Rendering tab, you have two items, P3_FROM and P3_BODY, corresponding to your two form fields,
From and Body. There are two buttons, CANCEL and SUBMIT.

In the Processing tab are a process and a branch. However, the process is a different type—a PL/SQL
anonymous block. This powerful type of process executes the PL/SQL procedure specified in the Source
element. The PL/SQL procedure can be a stored PL/SQL procedure or an anonymous PL/SQL block, as long
as the code is syntactically correct between a BEGIN statement and an END statement. In this case, the process
calls the CONTACT _US procedure using the P3_FROM and P3_BODY item values as input parameters. The body of
the CONTACT_US procedure is what creates and sends an email. Thus, the key difference between the form on
a table and the form on a procedure is in the page-processing process that is executed on a click of the Create
button. The APEX wizard has automatically provided the process type required for the selected form type.

The Shared Components region contains the standard entries for the table, breadcrumb and page, tab,
region, label, and button templates, the same as for the form on a table. Again, it was nice of the form wizard
to create all these elements for you.

126

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Master—Detail Report and Form

One of the most popular features in APEX is the Master Detail Form wizard. With a single, simple wizard,
you can quickly create a report and corresponding forms to manage data stored in a master-detail fashion.
Let’s use this wizard to create a report and forms for the TICKETS and TICKET_DETAILS tables.

Creating a Master-Detail Report and Form

First, you create the report and form on application pages 200, 210, and 220. Because you don'’t yet have
those pages created, the wizard does that for you.

1. Navigate to the Application Builder home page for your application.

2. Click the Create Page button in the upper right of the screen.

3. Select Form and click Next.

4. Select Master Detail Form and click Next.

5. See Figure 6-24. Set Table/View Owner to your schema. Set Table/View Name
to TICKETS (table). When the page refreshes, all the columns from the table are
selected by default. Click Next.

Create Master Detail x
®)

Master Table and
Columns

Select the table or view which contains the columns to be included in the master page.
" Table /View Owner APRESS
" Table / View Name TICKETS (table}

* Select Columns 3 TICKET_ID (Number)
SUBJECT (Varchar2)
DESCR (Varchar2)
CREATED_ BY (Varchar2)
CREATED_ON (Date)
CLOSED_ON (Date)

¢ ASSIGNED_TO (Varchar2)
« STATUS.ID (Number)

Usa User Interface Defaults: @ Yes Mo

oL

Figure 6-24. Creating the master page

127

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

When dealing with a master-detail relationship, you normally have a foreign key between the detail and
master tables. However, that may not always be the case. At the detail table step, the wizard allows you to
choose whether to show only tables that are related via a foreign key.

In this case, the tables are indeed linked, so you can leave Show Only Related Tables set to Yes.

6. Select TICKET _DETAILS for Table/View Name. When the page refreshes, make
sure the following columns are moved to the Selected area to the right. You
should end up with results like those in Figure 6-25.

e TICKET_DETAILS_ID
e TICKET_ID

e DETAILS

e CREATED_BY

e CREATED_ON

e ATTACHMENT

Create Master Detail x
@ ©

Detail Table and
Columns

Select the table or view which contains the columns to be included in the detail page.
Show Only Related Tables: © Yes No
Table / View Owner APRESS
Table / View Name TICKET_DETAILS

Select Columns FILE_NAME (Varchar2) 1y [TICKET_DETAILS_ID (Numbe)
MIME_TYPE (Varchar2) TICKET_ID (Numbex)
% | DETAILS (Marcharz)
CREATED_BY (Varchar2)
CREATED_ON (Date}
ATTACHMENT (Biob)

: oL

Figure 6-25. Defining the detail table

128

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

7. Click Next.

8. SetPrimary Key Type for the master table to Select Primary Key Column(s).
For Primary Key Column 1, select TICKET_ID (Number).

9. SetPrimary Key Type for the detail table to Select Primary Key Column(s).
For Primary Key Column 1, select TICKET_DETAILS_ID (Number).

10. Click Next.

11. Set Primary Key Source to Existing Trigger for the master table, and
click Next.

12. Set Primary Key Source to Existing Trigger for the detail table, and
click Next.

13. SetInclude master row navigation? to Yes, as shown in Figure 6-26. Set Master
Row Navigation Order to CREATED_ON, and click Next.

Do not click Finish at this point.

Create Master Detail x
e] © (] @
Master Options

Inciude master row navigation? Yes

Master Row Navigation Crder CREATED_ON (Date)
Secondary Navigation Crder Select Column

Inciude master report? Q) Yes No

Figure 6-26. Defining master-row navigation options

vww allitebooks.conl

129

http://www.allitebooks.org

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

14. Set Build Master Detail with to Edit Detail on Separate Page, and click Next.

15. Onthe next page, set the items to the values shown in Figure 6-27.

Master Page
* Page Number 200 ~
5 Page Title Tickets
E Region Title Tickets
PageMode Normal
Detail Page
i Page Number 210 f\
! Page Title Manage Tickets
* Master Region Title Manage Tickets
» Detail Region Titke Ticket Details
Page Mode Normal
Detail Page 2

* Page Number 220 ~
.

Page Title Ticket Detalls

" Region Tle Ticket Detalls

Page Mode || Modal Dialog
Figure 6-27. Specifying page attributes

16. Set Breadcrumb to Breadcrumb.

17. Once the region refreshes, in the Create Breadcrumb Entry section, set the
items to the values shown in Figure 6-28.

Breadcrumbs

B
£

Parent Entry No parent entry

<>

Entry Name (Master Report) Tickets
Entry Name (Master Detail Page) Manage Tickets

Entry Name (Detail Form) Ticket Details

Figure 6-28. Creating a breadcrumb entry

130

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

18. Click Next.

19. Set the Navigation Preference in Figure 6-29 to Create a new navigation menu
entry. When the page refreshes, enter Tickets for New Navigation Menu Entry
and leave the Parent Navigation Menu Entry setto - No parent selected -
then click Next.

Create Master Detail x
o]] o]] e @

Navigation
Menu

Navigation Proference Do not associate this page with @ navigation menu entry
© Create a new navigation menu entry

Identity an existing navigation menu entry for this page
" Mew Navigation Menu Entry Tickets

Pamnt Navigation Meny Entry = NO pasent selected -
Home

Figure 6-29. Setting navigation options

20. Confirm your selections, and click Create.

When the wizard completes, you have a working master-detail form on the TICKETS and TICKET_
DETAILS tables, plus a report on the TICKETS table. This is perhaps one report more than you expected,
but APEX knows that in most cases, you need the report to select the master-detail record to be edited, so
that report is created at the same time for convenience. The Master Detail Form wizard created one report
and two forms, plus the links and branches for navigation and the processes for performing database
transactions. The Tickets report has a link to the Tickets form, which allows editing of ticket master data and
lists ticket details. The Ticket Details region on the Manage Tickets page has an Edit link to the Ticket Detail
modal dialog, where the user can add, update, or delete ticket detail information. All the items, buttons,
processes, and even the column links were created by the Master Detail Form wizard.

Again, although you can build a master-detail form and report manually, the wizard is much faster
and certainly more efficient. Now, let’s make some adjustments to the report and the forms to suit your
requirements.

131

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Modifying a Master-Detail Report

Next, let’s modify the report to add CSV export capabilities, change the sorting options, and modify the date
format mask. Then we’ll clean up the two edit forms. Here are the steps:

1. Edit Page 200 of your application.
2. Inthe Rendering tab of the Tree Pane, highlight all columns of the Tickets
report except for TICKET_ID and DESCR, as shown in Figure 6-30.

=] ¥ £a

B

Rendering = 51| B~

Page 200: Tickets
Pre-Rendering
Ragions
Breadcrumb Bar
Content Body
Tickets
Columns
TICKET_ID
DESCR
[Ill creaTED_BY
[CREATED_ON

M cLosen_on
[AssiGNED_TO
[l sTarus_io
Attributes

Ragion Buttons
CREATE

Post-Rendering

Figure 6-30. Choosing to edit report attributes

3. Inthe Properties Editor, navigate to the Sorting attribute group and set
Sortable to Yes.

4, Select the DESCR column of the report and in the Properties Editor, change the
Type to Hidden Column. See Figure 6-31.

Column
== == Gy
¥ |dentification
b
Column Name DESCR
r P ——— S
Type { Plain Text LS =
| Plain Text
¥ Heading Plain Text (based on List of Values
| Link
Heading Display Image
b | Download BLOB
i . Percent Graph
ignmen e
¥ Layout

Figure 6-31. Editing column attributes

132

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

5. Inthe Rendering tab of the Tree Pane, click the Tickets report’s Attributes child
node.

6. Inthe Properties Editor, navigate to the Pagination attribute group and set
Partial Page Refresh to Yes.

7. Inthe Download attribute group, set CSV Export Enabled to Yes. Once the
section refreshes, set the following options, which you can also see in Figure 6-32:

e Separator: ,
e Enclosed By: “
e Link Text: Export to Excel

e Filename: tickets.csv

¥ Download

r

CSV Export Yes No
Enabled

CSV Separator

CSV Enclosed o
By
r
Link Text Export to Excel
Filename tickets.csv

Figure 6-32. Setting report export options

8. Inthe Rendering tab of the Tree Pane, edit the CREATED_ON column by clicking
on its name.

9. Inthe Appearance attributes group, use the pop-up list of values to select
Monday, 12 January, 2004 as the Format Mask. Selecting it returns fmDay,
fmDD fmMonth, YYYY into the Number/Date Format field, as shown in
Figure 6-33.

¥ Appearance

Format Mask fmDay, fmDD fmMonth, ~

Figure 6-33. Selecting a date format mask

133

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

CSS and HTML formatting directives entered in the Column Formatting properties group are applied to
the report column when the page is rendered:

10. Inthe Column Formatting properties group, enter font-weight:bold for the
CSS Style field (Figure 6-34).

¥ Column Formatting

HTML Expression ad || =
CSS Classes ~
CSS Style font-weight:bold ~
Highlight

Words

Figure 6-34. Choosing column formatting options

11. Edit the TICKET_ID column by clicking its name.

12. Inthe Export/Printing attributes group, set Include in Export / Print to No and
click Save.

13. Run the page to view your changes.

Note that when you sort an APEX report column by date, the report sorts based on the value of the
actual date, not the displayed value. This is a built-in feature of APEX. Also, when you export to Excel, the
TICKET_ID column isn’t part of the resulting CSV file, which is the result of your setting the Include in Export
option to No.

Next, remove STATUS ID and replace it with the corresponding value, pulled into the report by a slight
adjustment to your query:

1. Edit Page 200 in your application.
2. Edit the Tickets report by clicking the region’s name in the Rendering tree.

3. Inthe Source attributes group, click the Code Editor button in the upper right,
near the SQL Query definition. This will expand an editor window, allowing you
to better edit the SQL statement.

4. Locate and open the file ch6_add_status_to_report.txt, which you can find
where you extracted the class files earlier, and copy the contents into Code Editor,
replacing all text that is currently there, and click OK to dismiss Code Editor.

See Figure 6-35.

134

Code Editor - SQL Query

[o]lc a e 7

1 select TICKET_ID,
SUBIECT,
DESCR,
CREATED_BY,
CREATED_ON,

STA
from TICKETS,
STATUS_LOOKUP

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

where TICKETS.STATUS_ID = STATUS_LOOKUP.STATUS_ID

Cancel n

Figure 6-35. Pasting the new query text into Code Editor

Now, we'll reorder the columns in the report by using simple drag and drop. In this case, we want to
move the STATUS column just between the TICKET_ID and SUBJECT columns. You can do this as follows:

5. Inthe Rendering tree, click and drag the STATUS column from the bottom of the
list and drop when the indicator shows its position to be between the TICKET_ID
and SUBJECT, as shown in Figure 6-36.

f

§ ca

Rendering S o=

Page 200: Tickets

Tickets

Columns

TICKET_ID
+f STATUS

SUBJECT
DESCR
CREATED_BY
CREATED_ON
CLOSED_ON
ASSIGNED_TO

Antributes

&

Figure 6-36. Using drag and drop to re-order columns in a report

6. Save your changes.

Run the application to see the changes to the Tickets report. You should see results like those in
Figures 6-37 through 6-39. The Created On and Status values are now more readable, and you can sort by
column by clicking the column heading.

135

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Figure 6-38. The Manage Tickets form

Tickets
Tickets
Ticket Id Stavas Sunject Descr Created By
4 4 OPEN Cannct g o E-Mae Uiter CH50a 873 CANISE 10 0 Nl MS Cumiook o=l ACCOU PAUL
r CLOSED PG wil not tum on T Lsdr's BG wil /ot Barm £ Whth T Dowsr button i prseed. NGO
4 OPEN e Lser DS iore Mamary nstabed GECRGE
i CLOSED MSHE Crashed 4 trmis MSIE KIODS &% CAABNING o Y 610 o
OPEN Noed 10 install 5P2 SPZ Upgrace nesced in onsar 1o be compliant ALEX
r OPEN ROTaorE T 1T DG MAZEed I diiva not Deing MEpRed 12 \Copahan GEDDY
OPEN BSO0 aftwr wbhooting Biue Screen of Daath every time sysiem s ebooted NEAL
CLOSED Wirsless signal not stong encugh WieFl signal ot S S110NG 55 It Wi St weak JOHN
OPEN Fthink | have & vis Something ks not right - PC s slow ROBERT
CLOSED Wirus Definitions Dates. Message stating that virus updates are needec keeps appsarng JOMN
r OPEN Funfry sl coming fom PG Treen ia 469 04kt oor amanating from my PG MY
i aPEN Accidentaly deieced G2 pot Pl (22 pot piscandt i Fiecycie Bin; bin emptied e
4 PENDING Severs dead ponsis 0n screen Trers sew atloast 4 cead pieis o the diclay ALEX
i OPEN Srmarphona wil not syne with Dutiook ot snc with Cutiack contact ovents MICHAEL
i PENDING Gatmng Out of Memory emors. Same Out of Momary srer o2curs when OfMico stans. DAD
Expart to Excal
Figure 6-37. The Tickets report
Tickats /
Manage Tickets
Managa Tickats
Sutiect T Wirsiess signai not streng erough
Descr Wi-Fi signal not as strong as it was last week
Created By JOHN
Cradtnd On ZB-APR-2016 =
Closed On Od-MAT-2015 i)
Assignea o SCOTT
Swtus i
1Bt
Carcel
Ticket Detalls
Ticket Dotaile kd Tioket a Detads Createc By Croated On Atachment
B L] Advaed user 1o move PC coser 16 50ass Do SCOTT 27-APR-2015 [aenstype)
F] User resotved msue SCOTT 20-APA-20IS [etatypel

Crestad On ClosedOn Assigned To
Tuosaay, 05 May, 2018 O5-MAY-2018 SCOTT
Mionday, 04 May, 2016 AN
Suncy, 03 May, 2015 cous
Sarday, 02 May, 28 SCOTT
Friday, 01 My, 2015 ™
Thurscay, 30 April, 205 ™
Wednesday, 29 Aprd, 2015 ooua
Tuesdiay, 28 Aped, 2015 DEMAY-201S SCOTT
Monday, 27 Apeil, 2015 AN
Sunciay, 26 Apeil, 2018 SCOTT
Saturday, 23 April. 2015 ™
Friday, 24 Apeil, 2018 AN
Thursciay. 23 Aceil, 2015 ooug
Wednesdy, 22 Aprl, 2015 SCOTT
Tuesday, 21 April 2015]
owsl1- 150021 8 Hear

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Ticket Details]

Tickets / Manage Tickets /

Ticket Details

*
Ticket Id 8

Details Advised user to move PC closer to access point

Created By i SCoTT
Created On 27-APR-2015 &
Attachment Browse... No file selected.

Delete Cancel m

Figure 6-39. The Ticket Details form

Session State

Next, let’s add a Search field to the report to allow users to filter for a specific ticket they may be interested in.
Before we do, here’s a brief explanation of session state to help you understand how APEX keeps track of the
values associated with a user’s session.

Understanding Session State

Session state is what allows APEX to keep track of all the values that belong in a particular user’s APEX
session. Session state is particularly useful for keeping track of values as a user moves from page to page in
the application.

Unlike a stateful database application, where a connection is maintained continuously and all values
are retained until changed or removed or until the session ends, an APEX application doesn’t maintain a
continuous connection to the database. APEX is a stateless system—the APEX engine generates HTML pages
based on directives stored in the APEX repository. Each page-rendering is a stateless transaction. An APEX
session ties the stateless HTML pages together.

137

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

An APEX session is logically and physically distinct from the underlying database session. A database
session is stateful, and an APEX session is stateless. To illustrate the difference, think of a database session
as a phone call on a land line. The parties are connected for the duration of the conversation. Both parties
have to invest resources to carry on a conversation. Even if no one is talking, the connection—and the link
between the two parties—remains, as shown in Figure 6-40.

> < »
Oracle Forms Client Oracle Application Server Oracle Database

Figure 6-40. Database session communication

Think of an APEX session as a text message. The parties aren’t directly connected; they push
information in one direction at a time, even if the communication is an entire conversation via a series of
texts. Figure 6-41 illustrates APEX stateless session communication.

Web Browser Oracle HTTP Server Oracle Database

with APEX

Figure 6-41. APEX session communication

Sharing Database Connections

Multiple APEX users can share the same database connection. There is a one-to-many relationship between
APEX users and database sessions. This is why APEX can scale as well as it does—it doesn’t need dedicated
database sessions, only a database session to use to process a request from a user.

APEX, being stateless, must rely on an external mechanism to manage session state. The APEX engine
has a built-in session-state management component. This session-state management is an integral part of
APEX—it can’t be disabled or circumvented.

Each APEX user is assigned a unique session identifier. Session-state management functions the same,
regardless of how the user authenticates to the system—APEX authentication, database authentication,
custom authentication, or public user. Yes, even unauthenticated users are assigned a session identifier.

By default, APEX purges inactive sessions older than 24 hours every 8 hours. APEX session-state values
are stored in a table in the database. The APEX engine recognizes the user by their session identifier and
retrieves the appropriate set of session-state values for the user’s session.

138

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

The values of all APEX items, both page items and application items, are tied to this unique session
identifier. This identifier is referred to as the APP_SESSION_ID. You can see the session identifier in the URL of
most pages in an APEX application. It’s highlighted in Figure 6-42.

http://sadler:7777 japex/f7p=4000:420 .3?83190?88?1254.9:.N v

Figure 6-42. APEX session identifier in an APEX URL

Setting and Retrieving Session State

Session state is set by user-input items, computations, processes, and PL/SQL code. In PL/SQL, when within
an APEX process, you can set an item to be equal to a value, like so:

:P1_ITEM_NAME := 'some value';

In PL/SQL, when in a stored procedure, you can use the apex_util.set_session_state procedure to
set a value in session state, as follows:

apex_util.set session state('P1_ITEM NAME', 'some value');
The syntax to retrieve session state for an item varies according to where you're referencing the item.
In templates or regions, tabs, menus, or lists, use the following substitution-string syntax (and don’t
forget the trailing dot!):
&P1_ITEM NAME.
Use the following syntax in SQL statements:

:P1_ITEM_NAME

From PL/SQL, use one of the following two options, depending on what type of block or program unit
you're in:

Anonymous PL/SOL block: :P1_ITEM_NAME.
PL/SOL Unit Called from APEX: V('P1_ITEM NAME')

Within conditions, use this syntax:

P1_ITEM NAME

Note The v function just mentioned is an APEX-provided function that retrieves the session-state value
of an APEX item. Exercise caution when using this function, because using it in a stored program unit could
introduce performance issues.

139

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Viewing Session State

To view session state, click the Session link on the Developer toolbar. You should see a page like that shown
in Figure 6-43. Then use the Page, Find, and Views parameters to view session state for the application. The
drop-down View menu shown in Figure 6-44 allows you to view Page Items, Application Items, Session State,
Collections, and All of the Above.

ece Session State
S0 4000:34 B2 7605 « P 0N Fal Vi %_PAL D \PEOEAZ S8 "
Hems Pages Ouerias Tatias PLASOS images Debug Session Ermors
Fage 210 Find m
Rows %0 View Page Roms

Applicaton: 286 Holp Desk

Session 9308273750832
User APRESS
Workspace 121633611648858398

Page ltems
Application
Y Fage fem Name Display am Value Stans Encrypted
56 210 P210_TICKET IO Hicden 8 Updated Mo
280 20 P210_SUBJECT Tt Fiate Kayboard busted Uposted Mo
280 210 P210 DESCR Textarea i':'::e off thet keys work (| had 10 use someone sises PC 10 enter Vodated Mo
86 210 P210_CREATED_BY Tt Fieke MICHAEL Unaated No
286 210 P210_CREATED_ON Date Picker 1T-APR-2015 Undated Mo
286 210 P210_CLDSED_ON Date Picker Updated No
66 210 P210_ASSIGNED_TO Taxt Fiaic AN Undated No
286 210 P210_STATUS ID "U_ i 2 Unaated Mo
Fiid
256 210 P210_TICKET_ID_NEXT Hicdon 7 Uodated Mo
56 210 P210_TICKET_ID_PREV Hiodan 2 Uocated Mo
86 210 P210_TICKET_ID_COUNT Display Onty Bol21 Upaated ho

Figure 6-43. Viewing the session state of Page Items

140

& vmS0/ap SO0 pwA000:34:153 10582 TEB508-NO:
ems Pages Ouaries Taies PLSGL
Fage 210
Rows %0

Applicaton: 286 Holp Desk

Session SI0E27ITE0EI2
User APRESS
Workspace 1216X3611648559398
Browser Language en

Session State
Application Page e Mame
286 10 P101_USERNAME
286 210 PRI0_ASSIGNED_TO
286 210 P210_CLOSED_ON
28 20 P210_CREATED_BY
86 210 P210_CREATED_ON
56 210 P210_DESCR
256 20 P2I0_STATUS 10
86 210 P210_SUBJECT
] 210 P210_TICKET_ID
286 210 P210_TICKET_ID_COUNT
286 210 P210_TICKET_ID_NEXT

wmages Debug

Find

View

AN

MICHAEL

17-APR-2015

Noow of the keys work (| had
0 uBe somecne aises PC 1o
enter this)

2

Keyooard busted

ol

Session St

Text Fieid
Text Finid

Date
Pickar

Tex: Figld
Daa
Picker
Texares
Number
Fiok
Tex: Fiekt
Hidden

Display
Only

Hiddan

Errors

Assigned To

Closed On

Croated By

Created On

Status bd

Subject

st Id

P210_TICKET_ID_NEXT

Encrypted
No

No

No

Ne

No

Ne

No

No

No

CHAPTER 6

Data ltem id
121599555288000532

12318188731 5723008
123181482641729008
12318068581 17239008

12318108277 3729008
123180226124729007

12 ERITIGTTEI00N

12317062TE1 1729008

1231794843437 28006
1231881GTOOTTZH0N6

123187350525729015

Figure 6-44. Choosing to view session state for all items in the application

APEX ltems

FORMS AND REPORTS: THE BASICS

There are two types of APEX items: page items, which are displayed to the user on a page, and application
items, which hold values in an application but aren’t displayed. When referencing item values of either type
in queries, you should use bind variables. You may also want to reference some of the built-in items that are

available.

141

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Page vs. Application Items

APEX page items are the UI controls that let users view and enter data—Text Field, Textarea, Select List,
Checkbox, and so on. Page items are associated with a specific page and have UI properties associated
with them; the item is displayed to the user (or not) according to the UI properties. Figure 6-45 shows
the available APEX page item types, as displayed as part of the components gallery. See the APEX
documentation for more information on page item types and their attributes.

Regions Itemns Buttons =|v

Figure 6-45. APEX page item types

Application items aren’t associated with a page and have no UI properties. They hold values in an
application that are essential but are not necessarily displayed. You can use an application item much like
a global variable. For example, you may need to calculate sales tax based on the state the user lives in. You
could read that sales tax percentage from a table when the user logs in and keep the value in an application
item for use throughout the user’s session.

The Importance of Bind Variables

When referencing APEX item values, particularly in SQL queries in your APEX application, it’s important to
think about SQL security basics, including SQL injection. Consider the example of an online form that allows
a user to sign on with a username and password, which ultimately executes this query:

SELECT COUNT(*) FROM users
WHERE username = '&username’
AND password = '&password’
If you enter this password
I dont_know OR 'x' = 'x
the resulting SQL is
SELECT COUNT(*) FROM users

WHERE username = 'SCOTT'
AND password = 'I_dont_know"' OR 'x' = 'x'

142

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

This SQL statement erroneously returns 1, indicating True, rather than No data found. The user is
allowed in! Not good. To prevent the injection of unintended SQL, use bind variables in the SQL query, like so:

SELECT COUNT(*) FROM users
WHERE username = :USERNAME
AND password = :PASSWORD

Now try entering the following as your password:
I_dont_know OR 'x' = 'x

Unless this entire string is specifically your password, the database returns No data found. Your
attempt to sneak past the login fails.

We recommend the use of bind variables whenever possible. They prevent SQL injection and improve
SQL performance.

Built-In Items

APEX includes several built-in items for referencing key APEX application-wide session-state values. These
are set automatically by APEX and are available for reference by the developer throughout APEX. The most
common of these are as follows:

e APP_ID: The application identifier of the currently running application
e APP_ALIAS: The application alias of the currently running application
e APP_USER: The currently signed-on user

e APP_SESSION: The session identifier of the currently signed-on user

e APP_PAGE_ID: The currently running page identifier

APEX URL Syntax

Every APEX page is a call to the APEX engine. Every APEX URL is really a call to a specific page and passes
various parameters. Figure 6-46 shows the URL syntax.

f?p=
APP ID:

APP PAGE ID:
APP_SESSION:
REQUEST:

DEBUG:

Clear Cache:
iteml,item2:
itemValuel,itemValue?2:
printerFriendly

Figure 6-46. APEX URL syntax

143

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

f?pis the call to the f PL/SQL procedure passing the argument p. The argument is actually a
concatenation of nine arguments combined into one, delimited by a colon. The nine elements of the p
argument are the same for all APEX page requests. You may omit one or more of the arguments, but you
must include the colon delimiters as placeholders.

The elements that form the p argument are as follows:

e APP_ID: The application number or alias
e APP_PAGE_ID: The page number or alias

e APP_SESSION: The APEX session identifier
e REQUEST: The HTML request

e DEBUG: A debug flag, set to YES or NO or omitted to use the current value of the
debug flag

e (lear Cache: Alist of pages for which to clear the cache
e Item names: A list of APEX item names, separated by commas

e [temvalues: A list of APEX item values, separated by commas, that correspond in
order to the items specified in the list of item names

e Printer Friendly: A flag that determines whether the page is rendered in Printer
Friendly mode

It’s easiest to understand the APEX URL syntax by looking at a few examples. Table 6-1 shows several
examples and explains them.

Table 6-1. APEX URL Examples

f?p=8APP_ID. :10:84APP_SESSION.:::10 Calls page 10 of the current application using the current
session and clears the session cache for page 10

T?p=8APP_ID. :5:8APP_ Calls page 5 of the current application using the current
SESSION.::NO::P2_ID:1234 session, not in Debug mode, setting the value of P2_ID to 1234

f?p=8APP_ID.:5:&APP_SESSION.::YES Calls page 5 of the current application using the current session
in Debug mode

Asyou can see, the APEX URL not only supplies directions to the server, but is also your key to what
page is being requested, with what request, and with what values. So, how does this URL syntax tie in to your
work on the Help Desk application?

APEX applications store all values in an APEX session, which is securely bound to a specific user
and user session. Values stored in this user session can easily be set or read by a developer. Any item—
application or page—can be easily referenced from anywhere within your APEX application. Values can be
referenced and passed to APEX as part of the p parameter so as to control which APEX page is rendered and
what values are displayed on that page.

As the volume of data in your system grows, you need a quick way to sort through it and control what
data is passed to what page. You can add a page item and then use the value of that item to filter the SQL
statement for the report on page 200 of the application. In fact, an item in APEX can be referenced in a SQL
or PL/SQL region, as in the predicate of a query, by using the bind variable syntax (:P1_ITEM_NAME), and as
part of the APEX URL.

144

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Getting back to the wizard-generated Tickets report, you can apply what you just learned about session
state, APEX items, and the APEX URL to add a new item called P200_SEARCH that the user can use to filter the
report. After you make these report modifications, take a closer look at the components and attributes of an
APEXreport.

Searchable APEX Reports

Reports with Edit links let users scan a list of rows and choose one to modify. Scanning works well for reports
that are short, but when reports are long, especially more than a page or two, it’s time to add some search
functionality to help a user quickly zero in on a record to edit.

Creating a Searchable APEX Report

You've already modified the Tickets report generated by the Master Detail Form wizard to add sorting, CSV
export capability, and a readable status value. As generated, the report has an Edit link on the first column,
which navigates to a Ticket—Ticket Details master-detail form. For the user to find the correct ticket to edit,
you need a search function. In the next series of steps you will add a search item and a Go button to activate
the search, and you will modify the report query to filter on the search value. We'll use two different methods
to place the items in the grid layout. Know that both methods work equally well; which you use depends on
which you're more comfortable with. First, let’s create the search field:

1. Edit Page 200 of the application.

2. Create a new item in the Tickets region by right-clicking the region name and
selecting Create Page Item.

3. Inthe Properties Editor, enter P200_SEARCH for the Name and set the Label to
Search, as shown in Figure 6-47.

Page Item
= (=1 = | £ Ny
¥ |dentification
f Name P200_SEARCH
f Type Text Field Gl =
¥ Label
Label Search

Figure 6-47. Setting the attributes of the newly created item

145

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

4. Inthe Settings properties group, set the value of Submit When Enter pressed
to Yes.

Although you just set the item attributes so that the page is submitted when the Enter key is pressed,
it’s still a good practice to provide a way to submit the page using the mouse. Next, you’ll use the component
gallery and drag and drop to create a new button that, when clicked, processes the item value, stores it in
session state, and then reloads page 200:

5. Inthe Component Gallery at the bottom of the screen, select Buttons as the
component type. Click and drag the Text button so that it is positioned directly
beside the P200_SEARCH item you created in the previous steps, as shown in

Figure 6-48.
CONTENT BODY
COPY EDIT PREVIOUS NEXT

TEMS

P200_SEARCH ‘ (3
Text

REGION CONTENT
SUB REGIONS
CLOSE HELP DELETE CHANGE CREATE

CREATE

Figure 6-48. Creating a Go button for the search function

6. Inthe Properties Editor, enter P200_GO as the Button Name and Go as the Label.
Leave all the other attributes alone.

Next, you'll adjust the report query to apply the P200_SEARCH filter. You’'ll add a line to the query
predicate that uses the value stored in P200_SEARCH as a filter:

7. Edit the Tickets region definition by clicking its name in the Rendering tree.

8. Click the Code Editor button in the upper-right portion of the SQL Query
attribute.

9. Append the following line to the end of the query, and click OK:
AND UPPER(subject) LIKE '%'||UPPER(:P200 SEARCH)||'%"

10. Save and Run your report. Remember to test both the button and pressing Enter
while editing the search field. Both should filter the report correctly.

146

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Adding Reset Pagination

Any time you add a search item to a page, it’s a very good idea to also add a Reset Pagination process. This
prevents the APEX reporting engine from losing its place in a result set. In this case, there is only one way to
create the process, as there are no process components in the Gallery:

1. Edit Page 200 of the application.
2. Navigate to the Processing tab of the Tree Pane.

3. Right click on the Processing node of the tree and select Create Process from
the context menu.

4. Inthe Properties Editor, set the Name to Reset Pagination Process and select
Reset Pagination as the Type, as seen in Figure 6-49.

Process

l
Ml

¥ |dentification

r

Name Reset Pagination Process

r

Type Reset Pagination & :=

Figure 6-49. Specifying process options

5. Save and Run the application.

The search function should work both when the user presses Enter and when the user clicks the Go
button. But let’s go one more step and alter the Subject column so the search term is highlighted in red:

1. Edit Page 200 of the application.

2. Navigate to the Rendering tree and edit the Subject column by clicking its name.

3. Inthe Properties Editor, find the Column Formatting attributes group and enter

&P200_SEARCH. in the Highlight Words element. Make sure you include the
period (.) at the end. If you forget it, the variable won't be parsed correctly, and
therefore the value won'’t be highlighted.

This process uses APEX session state to indicate that the value the user entered into P200_SEARCH
should be used to highlight that same text in the Subject column. Continue as follows:

4. Save and Run your application.

147

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Now, when you enter a search value, the matching rows are returned with the search term highlighted
in red. In just a few minutes, you've created a sortable, searchable report for your Help Desk system. Let’s
look at what the report looks like behind the scenes. Figure 6-50 shows the components as seen from the
various tabs of the tree pane.

¢ 4 & B i & s 14 L
Rendering S| 2= =1 Processing e 0 | =B~ Page Shared Components =R
Pre-Rendering Computations
Regions P210_TICKET_ID
Breadcrumb Bar Validating

Breaderumbs [Global Page]

Contant Body TOCessas
Reset Pagioaton Process

Columns After Processing * Breadcrumb
TICKET_ID AJAX Callback Navigation Menu
STATUS Desktop Navigation Menu
SUBJECT Tempiates
DESCR Page
CREATED_BY Standard
CREATED_ON Page ltem
CLOSED_ON Optional
ASSIGNED_TO Button

Attriputes Text

rems Reglon
P200_SEARCH Tite Bar
P200_GO «'| Standard

Region Buttons Classic Report
CREATE S1andard

Post-Rendering Navigation Menu

Sige Navigation Menu

Figure 6-50. The searchable report as seen from the various tabs of the tree pane

Looking Behind the Scenes—APEX Report

Let’s take a closer look at the components and attributes of the Tickets report. Edit page 200 to view the
Rendering, Processing, and Shared Components tabs of the Application Builder. In the Rendering tab, you
have a single Tickets region that contains report columns, the two items you just added for search capability,
and a Create button. Click the Tickets region name to select it. Now, in the Properties pane, you can see the
details shown in Figure 6-51.

148

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Region
=== | = v
¥ Identification
r
Title Tickets
b
Type Classic Report =
¥ Source
r
SQL Query 5]
select TICKET_ID,
SUBJECT,
DESCR,
CREATED_BY,
CREATED_ON,
CLOSED_ON,
ASSIGNED_TO,
STATUS
from TICKETS,
STATUS_LOOKUP
where TICKETS.STATUS ID =
Page Items to ~
Submit
r
Use Generic Yes No
Column
Names

Figure 6-51. The Tickets report region source with the search filter

Here you see that the region type is Classic Report. The source for this region is your SQL query on
the TICKETS table with the modified WHERE clause to add the filter on the P200_SEARCH item, referencing
P200_SEARCH as a bind variable. You can use the Code Editor button to get a better view of the SQL statement
if you like.

By clicking the Attributes child node in the Rendering tree at the left of the page, you are able to view
and edit the visual attributes of the report region. Also, in the Rendering tree you can see the list of report
columns.

By selecting one (or many) of the columns, you can adjust the heading, column width, column
alignment, and heading alignment; you can also decide whether the column is shown, whether a sum
is required, and whether you want to enable sorting on the column. The columns may be reordered by
dragging and dropping them into the order in which you want them.

In the Shared Components tree, you see the expected objects for the navigation, the breadcrumb, and
the page, as well as the region, report, label, and button templates. It’s nothing new, but be glad the wizard
has built these for you.

Next, let’s focus on the Tickets and Ticket Details forms, the other components generated by the Master
Detail Form wizard.

149

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Looking Behind the Scenes—APEX Master-Detail Forms

Edit page 210 to view the Page Rendering, Page Processing, and Shared Components regions of the
Application Builder. You should see results similar to those shown in Figure 6-52.

L e = A A = £, Fp
4 = = = L =5 = i el

Rendering | o=

&
&

B
0o

Processing z = a= =v Page Shared Components =
Page 210: Manage Tickets Aft

Pre-Rendering 25
Go To Page 210
Go To Page 210

Fetch Row from TICKETS P220_TICKET_DETAILS _|D
Get Next or Previous Primary Key Value Validating

Process Row of TICKETS

neset page

Manage Tickets age
Aftributes hes Standard
Items Go To Page 200 Page tem

< P210_TICKET_ID AJAX Callback Required
P210_SUBJECT Optional
P210_DESCR tton
P210_CREATED_BY Text
P210_CREATED_ON lcon
P210_CLOSED_ON tegion
P210_ASSIGNED_TO Tithe Bay
P210_STATUS_ID Standard

< P210_TICKET_ID_NEXT Classic Reg
P210_TICKET_ID_PREV Standard

D210 TICKET 1N COlINT

Figure 6-52. Master Detail page as shown from the various tabs of the tree pane

In the Rendering tab, you have two After Header processes, a Manage Tickets HTML region that
contains your form items, and a Ticket Details report region.

The two After Header processes, Fetch Row from TICKETS and Get Next or Previous Primary Key Value,
do exactly what their names imply. The Fetch Row from TICKETS process fetches a row from the TICKETS
table for display in the form when the page passes a TICKET_ID. The Get Next or Previous Primary Key Value
process gets the next or previous TICKET_ID value in the series and fires in conjunction with the Next and
Previous buttons on the master-detail page.

The Manage Tickets region holds an APEX item for each of the TICKETS columns you selected to include
in the master-detail form, as well as buttons for cancel, delete, save, create, next, and previous operations.

The Ticket Details region is a report region that displays the ticket details and a Create button, which
redirects you to page 220 in order to create additional ticket details.

In the Processing tab, you see two After Submit branches that return you to this same page, an After
Submit P220 TICKET DETAILS ID computation, two processes (Process Row of TICKETS and Reset Page),
and an After Processing branch to page 200. The After Submit computation gets the next TICKET_DETAILS_ID
when you click the Create button in the Ticket Details region. The new TICKET_DETAILS ID is passed to
page 220, the Ticket Details form. The Process Row of TICKETS process performs the database DML
operations for insert, update, and delete operations on the TICKETS table. The Reset Page process resets
(clears) the elements of the page when the Delete button is clicked. The After Processing branch to page 200
redirects the user to page 200, your TICKETS list, on successful processing.

150

CHAPTER 6

FORMS AND REPORTS: THE BASICS

The Shared Components region includes the by-now familiar APEX elements for your page tabs, lists of
values, breadcrumbs, and templates.
Moving to page 220, the Ticket Details form, in the Application Builder, you will see elements that look
similar to those for the Manage Tickets form on page 210 (see Figure 6-53).

B & ca

Rendering

Page 220: Ticket Details

Pre-Rendering

Fetch Row from TICKET_DETAILS
Befora Regions
Regions

Dialog Header

zontent Body
Ticket Details
Attributes
nems
< P220_TICKET_DETAILS ID
P220_TICKET_ID
P220_DETAILS
P220_CREATED BY
| P220_CREATED_ON
P220_ATTACHMENT
Dialog Footer
Buttons
Altributes
Fegion Buttons
CAMNCEL
DELETE
SAVE
CREATE

Post-Rendering

= 7) & = 4 ca
Processing ; = ?E = Page Shared Components 8v
"
Validating u
Processing A
Processes Build
Process Row of TICKET _DETAILS Data L
rese! page W
Close Dislog Breadcrumbs
After Processing Breadcrumb
AJAX Callback Nawvigation Menu

Desktop Navigation Menu

Page

Modal Dialog

ge ftem

Tithe Bar

*| Blank with Attributes

Mavigat

Buttons Container

on Menu

Side Navigation Menu

Figure 6-53. The Ticket Details form as shown from the various tabs of the tree pane

The Rendering tab includes an After Header Fetch Row from TICKET DETAILS process, an HTML
region that contains items for each of the TICKET_DETAILS columns you selected to include in your master-
detail form, and buttons for processing.

The Processing tab includes a Process Row of TICKET_DETAILS process for handling inserts, updates,
and deletes on the TICKET _DETAILS table, a Reset Page process to clear the rows on a Delete transaction,
and a Go to Page 210 branch that returns the user to the Tickets page upon completion of a Ticket Details

transaction.

The Shared Components region on the Ticket Details page includes your page tabs, breadcrumbs, and

templates.

Wow! The Master Detail Form wizard created a lot—a fully functional report with master-detail forms,
all with no code written on your part. This master-detail example underlines the time-saving value of the
APEX wizards in generating APEX components, particularly when creating more complex and multipage

components for an application.

151

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

More on APEX Forms

When creating forms, the APEX wizards do about 80 percent of what you want them to do. The last 20
percent of fine tuning is up to you, the developer. In this section you will make a number of small changes to
the Manage Tickets and Ticket Details forms, with the overall goal of increasing usability.

Item Layout

APEX 5.0 provides two ways to adjust item layout: adjusting certain item attribute settings, and dragging
items in the tree view. You'll use both of these methods to adjust the Manage Tickets and Ticket Details
forms.

In many of the older themes, APEX laid out form items using standard HTML tables. This was
somewhat limiting, as the rows and columns of a table are fairly fixed in terms of layout. Using the new
Universal Theme, APEX has introduced the idea of a more loosely defined grid layout. Instead of HTML
tables with rows and columns, DIV elements are used to encapsulate each item.

Think of a grid as a coordinate system where items are placed either next to one another or above one
another. This grid layout may seem limiting, but you can rearrange items using the grid attributes of items. In
this section, you will use the grid attributes of the items on your page to move the Assigned To, Created On,
and Created By items to a single row.

Begin adjusting the Manage Tickets form layout by altering the item P210_CREATED ON so it’s
automatically populated with today’s date. Then, set it so it always displays in read-only mode, preventing
users from making any changes:

1. Edit Page 210 of the application.
2. Edit the item P210_CREATED_ON by clicking its name.

3. Inthe Properties Editor navigate to the Default attribute group, as shown in
Figure 6-54, set Type to PL/SQL Expression and enter SYSDATE as the
Default Value.

¥ Default

P

Type PL/SQL Expression

r

PL/SQL Expression Al

SYSDATE

Figure 6-54. Specifying a default value for a date

152

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

4. Inthe Read Only attribute group seen in Figure 6-55, set Type to Always.

¥ Read Only

Type Always %

Figure 6-55. Setting the read-only condition
You're also going to alter P210_CLOSED_ON. In order to reduce errors, you can use a little-known HTML
attribute to make the actual input field read-only. The user is then forced to use the date picker pop-up:
5. Edit the item P210_CLOSED_ON by clicking its name.
6. Inthe Appearance attribute group, enter 12 for Width.

7. Inthe Advanced attribute group, add the following text immediately after the
existing text in the Custom Attributes field (as shown in Figure 6-56):

readonly="readonly"

¥ Advanced

CSS Classes ~
Custom n_change(this)" readonly="readonly"
Attributes

Pre Text 2]
Post Text 2]

Figure 6-56. Setting the width and adding an HTML form element

8. Click Save.

153

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Placing Multiple Items in the Same Row

Now, let’s rearrange the items on the page so they aren’t in a single column but rather are arranged with
multiple items are in the same row:

1. Edit Page 210.

2. Using your mouse, click and drag P210_CREATED_BY in the grid layout so it
will be placed in a new grid position to the right of P210_CREATED_ON. As you
drag a component around the grid, a yellow box indicates an area where it can
be dropped. There is also a position indicator, in the form of a grey box, that
indicates the current drop position of the component, as shown in Figure 6-57.

Manage Tickets

1| P210_CREATED_ON k P210_CREATED BY

P210_ASSIGNED_TO

DELETE SAVE GET_PREVIOUS _TICKET_iD GET_NEXT_TICKET_ID

Figure 6-57. Repositioning P210_CREATED_BY by clicking and dragging the component

3. When you've positioned the fields correctly, the grid layout looks like Figure 6-58.

154

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

CONTENT BOOY
Manage Tickels
o O PRAEVOUS NEXT

TEMS

P210_SUBJECT
F210_DESCR
=] P210_CLOSED_ON
P210_ASSIGNED_TO
1l P210_STATUS. ID
P210_TICKET_ID_COUNT

REQION COMTENT

SUR REGIONS
CLOSE HELP DELETE EHANGE

CANCEL DELETE SAVE GET_PREVIOUS_TICKET_ID GET_NEXT_TICKET_ID
CREATE

CREATE

Figure 6-58. The repositioned component in the grid layout

Now you need to make sure the Assigned To, Created On, and Created By fields are displayed on the
same line:

4. Using the same techniques you just learned, reposition P210_ASSIGNED_TO
so that it is directly before P210_CLOSED_ON. When all of the components are
positioned correctly, the grid layout will look as shown in Figure 6-59.

TEMS

P210_SUBJECT
P210_DESCR
] P210_CREATED_ON P210_CREATED_BY
| P210_CLOSED_ON
PZ10_STATUS_ID
P210_TICKET_ID_COUNT

REGION CONTENT
SUB REGONS

CLOSE HELP DELETE CHANGE
CANCEL DELETE SAVE GET_PREVIOUS _TICKET_JID GET_NEXT_TICKET_ID

CREATE

CREATE

B3 Ticket Detai
corY o PROIOUS NEXT

TEMS

Figure 6-59. The three repositioned components in the grid layout

5. Click Save.
155

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Implementing LOVs

Next, you'll tie the lists of values (LOVs) that you created in Chapter 4 to the P210_ASSIGNED_TO and P210_
CREATED_BY items on the form:

1. Edit Page 210 of the application.

2. Edit the item P210_ASSIGNED_TO by clicking its name.

3. Inthe Identification attribute group, set Type to Select List.

4. Inthe List of Values attribute group (see Figure 6-60), set Type to Shared

Component, List of Values to TECHS, Display Extra Values to No, Display Null
Value to Yes, and enter - Select a Tech - for Null Display Value.

¥ List of Values

Type Shared Component

r

UstofValues (TECHS & >

r

Display Extra Yes No
Values

Display Null Yes No
Value

Null Display - Select a Tech -
Value

Null Return
Value

Cascading ~
LOV Parent
Item(s)

Figure 6-60. Setting LOV attributes

5. Edit the item P210_CREATED_BY by double-clicking its name.
6. In the Identification attribute group, set Type to Select List.

7. In the List of Values attribute group (see Figure 6-60), set Type to Shared
Component, List of Values to USERS, Display Extra Values to No, Display Null
Value to Yes, and enter - Select a User - for Null Display Value.

8. Save and Run the application.

156

http://dx.doi.org/10.1007/978-1-4842-0466-5_4

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

You should see results like those shown in Figure 6-61. Notice how the components are very small, even
though there seems to be a lot of white space.

Manage Tickets

Subject > VPN Client install lssues

Descr Cannot install VPN client - installer errors out each time

AssignedTo Do ¢ Croated On © 20-APR-201 Created By Ja
Closed On =

Status id 3

S5of21
Cancel Delete m < >
Figure 6-61. The Manage Tickets form using the new field placement
Clicking the Show Grid button in the Developer Toolbar at the bottom of the page, and then hovering

your mouse over one of the field labels, will show that the label is taking up three columns of the grid, as
shown in Figure 6-62.

Manage Tickets

Subject 8 VPN Client Install Issues

Descr Cannot install VPN client - installer errors out each time
Assigned To Do s Created On y 20-APR-201 Created By Ja
k
Closed On =
Status ld 3

5of 21

Cancel Delete m < >

Figure 6-62. The Manage Tickets form with Show Grid turned on

157

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

The page default is for each label to take up three columns of the grid; when you place more than one
item on the same line, it forces the items to shrink to fit the space. We can fix this by adjusting the Label
Column Span setting. However, if you only adjust for the three labels in question, you'll end up with form
elements that don’t line up with the rest of the form. In our case, we want to adjust the labels for all the
enterable components on the screen:

9. Edit the following together by using CTRL-Click (COMMAND-Click for Mac):

P210_SUBJECT
P210_DESCR
P210_ASSIGNED TO
P210_CREATED ON
P210_CREATED_BY
P210_CLOSED ON
P210_STATUS_ID

10. Inthe Property Editor, navigate to the Grid attribute group, as shown in
Figure 6-63, set Label Column Span to 2, and click Save.

¥ Grid
r
Start New Yes No
Row
Column Automatic
Column Span Automatic

Label Golumn |2

Span ;

Column CSS ~
Classes

Column ~
Attributes

Figure 6-63. Altering Label Column Span to allow for expanded item size

158

11.

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Once again, run the application, and you will notice the difference in how
the items are laid out on the page. You should see results like those shown in
Figure 6-64.

Manage Tickets

5of 21

Cancel

Subject i VPN Client Install Issues

Descr Cannot install VPN client - installer errors out each time

Assigned To Doug : Created On N 20-APR-2015 Created By Jackie

L

Closed On =

Status Id 3

Delete m < >

Figure 6-64. Corrected layout for the Manage Tickets form

Master-Detail Cleanup

You need to make a few more minor tweaks to the master-detail report and form. Let’s start by hiding the
TICKET_ID column from the detail report and form. At the detail level, TICKET_ID is the foreign key and
should not be an editable item:

1.
2.

¥ Sorting

Default
Sequence
r

Sortable

Edit Page 210 of the application.

Expand the Columns child node under the Ticket Details report node in the
Rendering tree.

Click on the TICKET_ID column and hide it by editing its Type attribute and
setting the value to Hidden Column.

Using multi-select, enable sorting for the DETAILS, CREATED_ON, and CREATED_BY
columns by setting the Sortable attribute to Yes, as shown in Figure 6-65.

- Select -

]

Figure 6-65. Specifying whether sortable for columns

159

CHAPTER 6 © FORMS AND REPORTS: THE BASICS
5. Lastly, edit the TICKET_DETAILS_ID column and change its Heading attribute to
Edit.
6. Click Save.

Finally, make a few small changes to the items on page 220:

—y

Edit Page 220 of the application.

Edit the item P220_TICKET _ID.

In the Identification attribute group, set Type to Hidden.
Edit the item P220_DETAILS.

2
3
4
5. Inthe Appearance attribute group, set Height to 5.
6. Edit the item P220_CREATED_ON.

7

In the Default attribute group set Type to PL/SQL Expression, then enter

SYSDATE as the PL/SQL Expression.
8. Inthe Read Only section, set Type to Always.

9. Edit the item P220_CREATED_BY.

10. SetType to Select List. In the List of Values attribute group, set Type to Shared
Component, List of Values to TECHS, Display Extra Values to No, Display Null
Values to Yes, and enter - Select a Tech - for Null Display Value.

11. Save your changes.

Since Page 220 is set up as a modal dialog, you cannot run the page directly. Instead, you'll have to
navigate to either Page 200 or 210 to run the application.

Your master-detail report and form are now complete. Using the Master Detail Form wizard, you
generated a report and master-detail form on the TICKETS and TICKET_DETAILS tables. You modified the
report to contain a user-friendly status value, sortable columns, and your preferred date formats. You
modified the Manage Tickets and Ticket Details forms to order items on the page, use text areas, and select
lists. Along the way, you reviewed the APEX components that make up your report and forms, as well as the
form, report, and column attributes available for customizing forms and reports to suit your needs.

APEX Help

Providing help to end users is an often forgotten and typically tedious task. Developers typically take the
easy route and skip it altogether, or the task is minimized or cut at the end of a project. Although APEX can’t
magically incorporate help into your applications, it does make it a lot easier for you, as a developer, to do so.

160

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Adding a Help Text Region

The APEX Help Text region automatically displays any associated help text for a given page and its items. It
can be placed on any page, including a global page. Although you can choose a region template for a Help
Text region, there is no way to change the style of the actual text. As an example, let’s add a Help Text region
to page 210 as a sub-region to the master Edit region:

1. Edit Page 210 of the application.

2. Create a new Help Text region by navigating to the Regions pallet of the
Component Gallery and dragging the Help Text icon to the Sub Regions section
inside the Manage Tickets region, as shown in Figure 6-66.

Manage Tickets

P210_CREATED_ON P210_CREATED_BY

CANCEL DELETE SAVE GET_PREVIOUS _TICKET _iD GET_NEXT_TICKET_ID CREATE

Tickat Details

Figure 6-66. Creating a Help Text region

3. Inthe Properties Editor, set the Name to Help.

4. Inthe Appearance attributes group, set the Template to Collapsible and then
click on the Template Options button to expand the Template Options pop-up.

5. Set the Default State to Collapsed and click OK.
6. Save and Run your application.

Notice that when you run page 210, you will see the region title Help rendered with a > next to it at
the bottom of the Manage Tickets region. The newly created Help region was created as a sub-region, and
therefore it appears within its parent region. Clicking the » expands the region; thus, the help text is only
displayed when the user explicitly requests it. Currently, the Help region doesn’t have any help text. You seed
the item-level help text in the next section. You can add page-level help by editing the page definition and
entering text into the Help Text input of the Help section.

161

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Seeding Help Text

Notice that not all the items are shown in the Help region. This is because some help text was added to this
region when the UI Defaults were defined, but the other items’ help text is still empty. Help text defined in
the UI Defaults is automatically pulled into any form that is built using those defaults. You can manually add
help text by editing each item. You can also seed any APEX items that don’t have help text already assigned
using yet another APEX wizard.

1. Atthe upper right in the Application Builder, click the Utilities icon, as shown
in Figure 6-67, and select Application Utilities so as to go to the Application
Utilities home page.

+v | Ry | O

Figure 6-67. Locating the Application Utilities icon

2. Inthe Page-Specific Utilities region at right of the page, click Item Utilities.

3. Click Grid Edit of all Item Help Text.

The report here shows only those items that already have help text associated with them. However,
you can use one of the buttons on this form to seed all empty help text in your application with a single
default value. There is no perfect value with which to seed the help text, but something like “Need Help Text”
indicates that the help for that item needs to be entered:

4. Click Seed Item Help Text.

5. Enter NEED HELP TEXT for Default Help Text in the Seed Item Help section, as
shown in Figure 6-68, and click Apply Changes.

. Seed Item Help

Use this utility to set help text for all items in the current application that currently have no help text.

Default Help Text NEED HELP TEXT

Figure 6-68. Seeding item help

162

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

The help text has been seeded, and you're taken back to the main report. From here you can narrow the
items that are displayed and edit the help text directly:

6. Inthe Report Filter section at the top of the page, enter 210 for Minimum Page
Number, and click Go.

At this point, you're viewing all the help text for any item on page 210 or greater in a single interface.
Feel free to change the values for any of the items on page 210 in order to see them in the Help region.

Once you've altered and saved your help, run page 210. Note that if you click the question mark icon
next to any individual item on page 210, a pop-up window appears, displaying the help specific to that item.

The APEX Help Text region automatically displays the help text for a given page and its associated items.
Display of the help text is managed by APEX behind the scenes. Although it isn’t very robust—there is no way
to alter the look and feel of the region with templates or otherwise—there is now no excuse for not adding
help to your application.

Declarative BLOBs

In Oracle, BLOB stands for Binary Large Object and is a data type designed to store binary files. APEX

has streamlined how you can manage BLOB columns with a feature called Declarative BLOBs. The APEX

wizards recognize a BLOB column and automatically alter the related APEX item and report so as to interact

seamlessly with the column. Why do you care about BLOB columns? Using BLOB columns allows you to

easily upload and download files, such as documents, spreadsheets, and images, into your applications.
Plan ahead when using the Declarative BLOBs feature. At design time, include these columns in tables

that will use Declarative BLOBs:

e FILENAME: Stores the actual file name that is used when a user uploads the file

e MIME_TYPE: Stores the type of the file so browsers know which application to launch
(Word for .doc, Excel for .x1s, and so on)

e LAST_UPDATED: Stores the date the BLOB was last updated

e CHARACTER_SET: Stores the character set of the BLOB, which is essential for indexing
and processing data that resides within the BLOB

The first two columns are essential for reading data out of the BLOB when needed. APEX uses the
Number/Date format column attribute of the BLOB column to map these attributes to the BLOB column
stored in the database.

If you add a BLOB column after creating a report or form using a wizard, you have to manually set the
column or item properties in order to integrate BLOB processing.

Because you added a BLOB column to the TICKET_DETAILS table when you ran the SQL script, some
things have been done for you. But you still need to do several things to use Declarative BLOBs properly.
First, you have to map the FILENAME and MIME_TYPE columns to the form that is used to upload the
document, so that these details are saved in the database. Let’s address the form on page 220 first.

1. Edit Page 220 of the application.

2. Edit the item P220_ATTACHMENT. In the Settings section, you will see the fields
shown in Figure 6-69.

163

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

¥ Settings

Storage Type

MIME Type

Column

Filename
Column

Character Set

Column

BLOB Last

Updated
Column

Display

Download Link

Download Link

Text

Content

Disposition

BLOB column specified O

MIME_TYPE

FILE_NAME

Yes No
-bownload

Attachment

Figure 6-69. Specifying BLOB settings

164

3.

4,

In the Settings attribute group, enter MIME_TYPE for MIME Type Column,
FILE_NAME for Filename Column, and Download for Download Link Text.

Click Save.

Next, alter the report on page 210:

1.
2.
3.

Edit Page 210 of the application.
Edit the Ticket Details region by clicking its name.

Locate and open the file ch6_blob_report.txt, which you can find where you
extracted the class files from earlier, and copy the contents into the SQL QUERY
attribute, replacing all text that is currently there. See Figure 6-70.

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

Region
=S| = = S
Title Ticket Details
Type Classic Report o M=
¥ Source
v =
SQL Query 2

select TICKET_DETAILS_ID,
TICKET_ID,
DETAILS,
CREATED_BY,
CREATED_ON,

from TICKET_DETAILS
where TICKET_DETAILS.TICKET_ID = :P218_TICKET_ID

Page ltems to P210_TICKET_ID
Submit

r
Use Generic Yes | No
Column
Names

Figure 6-70. Entering the report query with a BLOB column

Notice the change in the last column in the select list. Using dbms_1lob.getlength indicates to APEX
whether the ATTACHMENT BLOB column contains any data. If it does, the query returns a number greater than 0.
Now you need to alter the report column to display a link that allows the end user to download any

document that may have been uploaded:

4. Expand the Columns node under the Ticket Details node in the Rendering tree.
5. Edit the ATTACHMENT column, changing the Type attribute to Download BLOB.

6. Inthe newly visible BLOB Attributes attribute group, enter TICKET_DETAILS for
Table Name, ATTACHMENT for Blob Column, TICKET DETAILS ID for Primary
Key Column 1, MIME_TYPE for Mime Type Column, FILE_NAME for Filename
Column, and under Appearance enter Download for Download Text, as shown in
Figure 6-71.

165

CHAPTER 6 © FORMS AND REPORTS: THE BASICS

¥ BLOB Attributes

Table Owner Parsing Schema
Table Name TICKET_DETAILS A
BLOB Column ATTACHMENT

r

Primary Key TICKET_DETAILS_ID
Column 1

Primary Key |- Select -

Column 2

Mime Type MIME_TYPE
Column

Filename FILE_NAME
Column

Last Updated - Select -

Column

Character Set - Select - G
Column

Figure 6-71. Modifying the BLOB column attributes

7. Save your changes.

Run the application. Test the file upload and download capabilities by attaching a file to one of the
Ticket Details records and then downloading it from the report.

This ability to easily upload and download files in APEX is extremely useful in building web applications
where users need to upload and download data for whatever purpose. The Declarative BLOBs feature of
APEX makes it simple for developers to add upload and download capabilities to an application.

Summary

You've reviewed most of the APEX form and report types and walked through building various forms and
reports for your Help Desk system using the APEX form and report wizards. Along the way, you've learned
about APEX items, session state, the APEX URL syntax, adding help to APEX pages, and incorporating
upload and download functionality by using the Declarative BLOBs feature. That’s a lot to digest, but the
APEX wizards have done most of the work for you.

The common theme here is that the APEX form and reports wizards are huge time-savers for
developers, creating all the objects—items, buttons, branches, processes, and so on—needed for a working
form or report. You can then alter the created objects to quickly customize the form or report to suit your
needs.

Still, you haven't strayed far from what APEX builds for you, and you've covered only the simplest types
of forms and reports. The next chapter will look at more-complex types of APEX forms and reports, also
generated by wizards.

166

CHAPTER 7

Forms and Reports: Advanced -

This chapter will focus on more complex types of forms and reports; it will also introduce charts and maps.
Although these are more complex types of forms and reports, they're most often created by using the APEX
form and report wizards.

In the sections that follow, you will learn how to use the APEX form and report wizards to add pages
to your Help Desk application in order to manage multiple tickets on a single page, allow some interactive
analysis of ticket data, and visualize tickets by date and status. To do so, you will create a tabular form, an
interactive report, a calendar, and a pie chart, each demonstrating one of the more advanced types of APEX
forms and reports.

Tabular Forms

Tabular forms allow users to edit both rows and columns of data at once, much like a spreadsheet. The
developer can choose a different element type for each column—text box, text area, select list, check box,
radio group, and so on. Users can make changes to multiple data elements and submit them as a single
transaction. APEX tabular forms handle inserts, updates, and deletes—all with no code!

The APEX wizards create all of the required elements for a fully operational tabular form. Like all APEX
forms, there is no logical relationship between items that make up a tabular form. Once the wizard creates
the items, they're indistinguishable from other APEX page items and can be modified independently of one
another. However, I recommend exercising caution when making modifications to items generated by an
APEX wizard; doing so can cause the tabular forms to become inoperable.

You can opt to bypass the wizard and create your own tabular forms. As your application becomes more
sophisticated, you may find it more efficient to create forms manually. However, this book focuses on the
wizard approach.

Creating a Tabular Form

In this section you will create a new page that contains a tabular form based on the TICKETS table. The form
allows multiple tickets to be edited on the same page. You will then alter the display properties of the tabular
form’s columns. Proceed as follows:

1. Navigate to the Application Builder Home Page for your application.
2. Click the Create Page button at upper right on the page.

3. Select Form and click Next.
4

Select Tabular Form and click Next.

167

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

5. Select your schema for Table/View Owner, and then select TICKETS (table) for
Table/View Name.

6. Make sure that Allowed Operations is set to Update, Insert and Delete.

7. By default, Use User Interface Defaults and all the columns are already selected,
as shown in Figure 7-1. Click Next.

Create Tabular Form x
&

Table and Columns

This wizard builds a form to perform update, insert, and delete operations on muitiple rows in a database table.
" Table / View Owner APRESS
" Table / View Name TICKETS (lable)

i Select Columns

3y TICKET_ID (Number)

SUBJECT (Varchar2)

% DESCR (Varchar2)
CREATED_BY (Varchar2)
CREATED_ON (Date)
CLOSED_ON (Date)

¢ ASSIGNED_TO (Varchar2)

STATUS._ID (Number)

Allowed Operations Update, Insert and Delete

Use User Interface Defaults: @ Yes No

Figure 7-1. Selecting columns for a tabular form

8. SetPrimary Key Type to Select Primary Key Column(s).
9. SetPrimary Key Column 1 to 1. TICKET_ID (Number), and click Next.
10. Set Source Type to Existing Trigger and click Next.

11. Select all columns as Updatable Columns, as shown in Figure 7-2,
and click Next.

168

CHAPTER 7

Create Tabular Form

] & @

Updateable
Columns

Primary Key Column 1: TICKET_ID

* Updatable Columns

®]
»

«

< Cancel

SUBJECT (Varchar2)
DESCR (varchar2)
CREATED_BY (Varchar2)
CREATED_ON (Date)
CLOSED_ON (Date)
ASSIGNED_TO (Varchar2)
STATUS_ID (Number)

Figure 7-2. Selecting updatable columns for a tabular form

FORMS AND REPORTS: ADVANCED

S5 3

€

12. Enter 230 for Page and Manage Multiple Tickets for Page Name and Region

Title as shown in Figure 7-3.
13. SetPage Mode to Modal Dialog

14. Set Breadcrumb to Breadcrumb.

15. When the page refreshes, set Entry Name to Manage Multiple Tickets and
Parent Entry to Tickets (Page 200), as shown in Figure 7-4, and click Next.

169

CHAPTER 7 FORMS AND REPORTS: ADVANCED

Create Tabular Form
o () - &

Page and Region
Attributes

Use this page to specify page and region information.
7 Page 230
5 Page Name Manage Multiple Tickets
" PageMode Modal Dialog %
i Region Title Manage Multiple Tickets

Region Template Standard

<

Report Template template: Standard

Breadcrumb . Breadcrumb :

1<>

Figure 7-3. Identifying page and region attributes for a tabular form

Breadcrumb Breadcrumb 2
Parent Entry Tickets (Page 200) -

Entry Name | Manage Multiple Tickets |

Figure 7-4. Creating a breadcrumb entry for a tabular form

16. For Navigation Preference, select Identify an existing navigation menu entry
for this page. When the dialog refreshes, set Existing Navigation Menu Entry to
Tickets and click Next.

17. Change the Add Row Button Label to Add Tickets.

18. Check your selections in the Confirmation scrollable region, as shown in
Figure 7-5.

170

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Create Tabular Form x
o o -] ()]]

Confirm

You have requested to create a tabular form page with the following attributes. Please confirm your selections.
Application 286
Page 230
Page Name Manage Multiple Tickets
Reglon Title Manage Multiple Tickets
Table Owner APRESS
Table Name TICKETS

Columns TICKET_ID
SUBJECT
DESCR
CREATED_BY
CREATED_ON
CLOSED_ON
AQRIGNEN TO |

Figure 7-5. Checking our choices in the Confirmation region

19. Click Create.

171

CHAPTER 7 FORMS AND REPORTS: ADVANCED

Modifying a Tabular Form

Your tabular form will work, but currently there is no way to navigate to it. First, you need to create a button
on page 200 that links to your new tabular form:

1. Edit Page 200 of the application.

2. Create a new button by dragging a Text[Hot] button from the Component Gallery
to the Create button position of the Tickets region, as shown in Figure 7-6.

CONTENT BODY

EH Tickets

CoPY EDIT PREVIOUS NEXT
ITEMS

REGION CONTENT

SUB REGIONS
CLOSE HELP DELETE CHANGE CREATE
CREATE
Text [Hot]
FOOTER

INLINE DIALOGS

Figure 7-6. Dragging a new button to the Tickets region

3. Enter MANAGE_MULTIPLE_TICKETS for Button Name and Manage Multiple
Tickets for Label, as shown in Figure 7-7.

l
L
|
||
4
<

¥ |dentification

r

Button Name MANAGE_MULTIPLE_TICKETS

r

Label | Manage Muitiple Tickets|

Figure 7-7. Specifying button attributes

172

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

4. Inthe Behavior attribute group, set Action to Redirect to Page in This
Application. Click the Options Dialog button next to Target. Once the Options
Dialog appears, set Page to 230, set Reset Pagination to YES, as shown in
Figure 7-8, and click OK.

Link Builder - Target

¥ Target
r
Type Page in this application
r
Page 230
¥ Set Items
Name

¥ Clear Session State

Clear Cache

Reset Yes No
Pagination

» Advanced

Value

Cancel

Figure 7-8. Specifying button action attributes

5. Save and Run your application.

At this point, you should be able to navigate to your tabular form from page 200 by clicking the Manage

Multiple Tickets button.

However, now you need to make some cosmetic modifications so you can better control data entry and

the look and feel of the dialog.
First, let’s increase the size of the dialog window so we can see all the elements of the form:

1. Edit Page 230 of the application.

2. Select Page 230: Manage Multiple Tickets in the Rendering tab of the

Tree Pane.

3. Inthe Properties Editor set the dialog Width property to 1200 and the Height

property to 720.
4. Click Save.

173

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Next, you'll make some changes to the columns of the Tabular Form.

5.

10.
11.
12.

Expand the Columns node under the Manage Multiple Tickets node of the tree
in the Rendering tab.

Edit the TICKET_ID_DISPLAY column and set Type attribute to Hidden
Column.

Multi-select SUBJECT, DESCR, CREATED_BY, CREATED_ON, CLOSED_ON,
ASSIGNED_TO, and STATUS_ID and make sure their Sortable properties are set
to YES.

Multi-select the SUBJECT and DESCR columns.

In the Properties Editor, set Type to Text Area, Width to 16, and Height to 3.
Edit the ASSIGNED_TO column.

In the Properties Editor, set Type to Select List.

In the List of Values attribute group, set Type to Shared Component, List of
Values to TECHS, Display Extra Values to No, Display Null to Yes, and
enter - Select a Tech - for Null Display Value, as shown in Figure 7-9.

¥ List of Values

r
Type
r

List of Values

r
Display Extra
Values

r

Display Null
Value

Null Display
Value

Null Return
Value

Figure 7-9.

13.
14.
15.

174

Shared Component 2
TECHS b >

Yes No

Yes No

- Select a Tech -

Specifying a LOV for the ASSIGNED_TO column

Edit the CREATED_BY column.
In the Properties Editor, set Type to Select List.

In the List of Values section, set Type to Shared Component, List of Values to
USERS, Display Extra Values to No, and Display Null to Yes, and enter - Select
a User - for Null Display Value, as shown in Figure 7-10.

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

¥ List of Values

r

Type Shared Component 2
r

List of Values USERS & >
r

Display Extra Yes | No

Values
r

Display Null Yes No

Value

Null Display - Select a User -

Value

Null Return

Value

Figure 7-10. Specifying LOV attributes for the CREATED BY column

16. Edit the STATUS ID column.

17. Inthe Properties Editor, navigate to the Default attribute group and set Type to
PL/SQL Expression and enter get_status ('OPEN") for Default.

18. Save the edits you just made and then run your application. Note: Because page
230 is a modal dialog page, you will need to run it from the button you created on

page 200.

175

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Looking Behind the Scenes

Let’s take a look at what the Tabular Form wizard has created for you—the contents of your tabular form.
Edit page 230 to examine the various tabs of the Tree Pane. They should look similar to those shown in

Figure 7-11.

o=
A=

" 1 =
Rendering 2= =R

Pre-Rendering

Regions
Dialog Header
Content Body
Manage Multiple Tickets
Columns
Attributes
Ragion Buttons
MULTI_ROW_DELETE
sSuBMIT
ADD
Dialog Footer

Post-Rendering

B

Processing

Y

r
£
&

000

After Submit
Validating
Validations
SUBJECT not nult
CREATED_ON not null
CREATED_ON must be a valid date
CLOSED_ON must be a valid date
STATUS_ID must be numeric
Processing
Processes
ApplyMRU
ApplyMRD
Close Dialog
After Processing
Branches
Go To Page 230

AJAX Callback

Figure 7-11. The various tabs of the Tree Pane for page 230

w

- .
E Z/L =tz

Page Shared Components =v

Lists of Values
USERS
TECHS
P230_TICKETS_STATUS_ID
Lists
Authorizations

Build Options

Data Load

Web Service References

Breadcrumbs
Breadcrumb

Navigation Menu

Desktop Navigation Menu

Page

Modal Dialog
Button

Text
Reglon

Title Bar

Standard
Ciassic Report

Standard
Navigation Menu

Side Navigation Menu

In the Rendering tab, APEX has created a Report region. But you created a form, didn’t you? Despite its
name, a tabular form is actually a SQL report with certain column-level options enabled and some processes

added to handle data manipulation.

In the Processing tab, in the Processing section, you see two processes: ApplyMRU and ApplyMRD.
These special types of processes handle the multiple-row inserts and updates (ApplyMRU) and deletes
(ApplyMRD) on the TICKETS table. These processes handle all DML operations on the TICKETS table for you.

APEX has also created validations for several of the columns, which are created automatically based on
the TICKETS table column definitions plus any UI Defaults defined on the TICKETS table.

In the Shared Components tab are the usual page and tab templates that are the defaults for your

application.

Asyou can see, the ApplyMRU and ApplyMRD processes make the difference between the Report
region being a static report region and being a fully functional tabular form. And it’s so much easier to let the

APEX wizard create all this for you!

176

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Interactive Reports

Your ticket report is what's called a classic report. It’s the original style of APEX report and still has practical
applications in a variety of situations where the requirement is for a simple list of data with no interactivity.
Most applications, including APEX itself, now employ the APEX interactive report, however.

Introduced in APEX 3.1, the interactive reports feature allows APEX to quickly and easily include
user-driven ad hoc capabilities in your applications. Interactive reports are greatly enhanced in APEX 5.0.
The beauty of APEX interactive reports is that they give the end user powerful ad hoc query capability with
exactly zero lines of code written by the developer. End users can customize the following:

e Searching

e Sortorder

e Columns

e Breaking

e Highlighting

e Computations
e Aggregations

e Charts

e Group by

e Flashback time
e Saved reports

e Subscription (email notification)

Interactive reports are technically nothing more than a report type. The Create Report wizard steps are
similar to what we have already seen, and you will expend the same effort in building an interactive report as
you would for a classic report.

Classic reports can be easily converted to interactive reports. There is no way to revert from an
interactive report to a classic report, however. (But why would you want to?) The end-user features and
overall value of interactive reports are best illustrated with an example, so let’s add an interactive report to
your application.

Creating an Interactive Report

Interactive reports require nothing more than a SQL query. APEX handles the rest. You start by creating a
new page, menu item, and interactive report all at once on a view of your Help Desk data. Begin as follows:

1. Navigate to the Application Builder’s Home Page for your application
Click Create Page button in the upper right of the screen.
Select Report and click Next.

Select Interactive Report and click Next.

a o~ LN

Enter 300 for Page Number and Analysis for Page Name and Region Name,
and set Region Template to Interactive Report.

177

CHAPTER 7 FORMS AND REPORTS: ADVANCED

6. Set Breadcrumb to Breadcrumb and, when the page refreshes, click Next.
See Figure 7-12.

Create Interactive Report
D

Page and Region Attributes

|U€I‘1tify a page number and name.
* Page Number 300
* Page Name Analysis

* PageMode Normal

<>

Region Template Interactive Report &

. Region Name Analysis

Breadcrumb || Breadcrumb i

<>

>

Parent Entry No parent entry

Entry Name Analysis

< Cancel

Figure 7-12. Specifying the page number, name, and breadcrumbs for an interactive report

178

Next >

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

7. Set Navigation Preference to Create a new navigation menu entry. When the
page refreshes, it should look like Figure 7-13. Click Next.

@]

Navigation Menu

Navigation Preference Do not associate this page with a navigation menu entry
° Create a new navigation menu entry

Identify an existing navigation menu entry for this page
* New Navigation Menu Entry Analysis

Parent Navigation Menu Entry = NO parent selected -
Home

.- (Submit a Ticket)
.- {Contact Us)
Tickets

< Cancel Next >

Figure 7-13. Specifying navigation options for an interactive report

179

CHAPTER 7 FORMS AND REPORTS: ADVANCED

For this report you're going to use the TICKETS_V view instead of the TICKETS table directly. The
view joins the TICKETS table to the STATUS_LOOKUPS table so you don’t have to do it manually later at the

column level:

8. Setthe Source Type to Table and then select TICKETS_V (view) for Table /
View Name. Set Uniquely Identify Rows by to Unique Column, enter TICKET_ID

for Unique Column, and click Next (see Figure 7-14).

Create Interactive Report
(]] 5]

Report Source

" source Type @ Table SQL Query

" Table / View Owner APRESS

<>

" Table/View Name TICKETS_V (view)

*
Select Columns

) TICKET_ID (Number)
SUBJECT (Varchar2)

» DESCRIPTION (Varchar2)
ASSIGNED_TO (Varchar2)

> CREATED_ON (Date)

CREATED_BY (Varchar2)

CLOSED_ON (Date)

« STATUS (Varchar2)

NUMBER_OF _DETAILS (Number)

Link to Single Row View Yes |2

Uniquely Identify Rows by Unique Column -3

Unique Column | TICKET_ID

< Cancel

Figure 7-14. Entering a SQL SELECT statement for an interactive report

9. Click Create.

180

I & = 29

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Running an Interactive Report

Run the application and navigate to the Analysis menu item. The page looks similar to that shown in
Figure 7-15. At first glance, the interactive report looks no different than any other APEX report. However, the
interactive report can perform a number of functions that a standard APEX report can't.

Log Cug
G0 Actons

Suject Descrizton AssignedTo CreatedOn Creawd By Closed On Stts Number Of Detalls
Carnot iog into E-Mat Usar cabed and carnot g 10 Pis ME Outiook -mal Actount SCOTT EMAVI0IE PALL O5-MAY-2016 OPEM 2
PG Wil not tum on Tra Loar's PG will 01 U7 01 AN B POWSH DUTION S Prosse DA DLMAYIS RINGD . CLOSED 1
Mt e Moy Lisae i, v sy et Doua GM-MAV01S GEORGE . OPEN 1
MEIE Grashed 4 Smes MSIE kseps on crashing for any 3% SCOTT QMAYZ0NS JOHN cLoSED 1
Podd 10 etes 5P2 SPZ Upgrade neoded In orer to b compiant 0 DI-MAYZOS ALEX oFEN 1
Mitwecr Grve Pt DG Magie! X ey Nt Daineg mapped 10 \Corpatam ™ M-APRIOIS GECOY - OPEN 1
BSO0 afer rebocang Bue Scrnen of Coah vy b System 3 recooted DoUG THAPRI0NE NEAL OPEN 1
Wireiee 5gnal rot strong enough W-Fl signal not 5 500 a1 was st wosk sCOTT WAPRIS JOHN DSMAY200 CLOSED]
Verinic | v @ vius Someting b net ight - PG is siow DN I-APA0NS ADBERT OPEN 1
Wi Defritions Dates Mestags stating that virus upcdates. aen needed kesps snceading SCOTT HAPRI0IS JOHN - CLOSED 1
Fusy £7al coming Fom PG Thans i 5 003 6304 emarang o my PG ™ ZAPRZNS Jema oPEN 1
Accidentaty cated CZ.ppt Fila 02 ppt placed In Fiacycle Bin; tin smptiod DaN LAPRIUIS EDDIE - OPEN 1
Sevaral caad pixsis 0n ST Trosew arw a2 lstat 4 chn) sl o the Ciaplay Doua IMAPA0IS MLEX PENDING 1
Smartphons wil not synG with Outioox. Motowia G does not myne with Outiock contacts nd calender svents SCOTT IAPAINS MICHAEL OPEN 1
Gatting Out of My arrors Bame Outl of Miamony #rvoe SOCUS whn D stants DN I-APAZ0NS DAVD . PENDING 1
VPN Gl st Besuoms Casrst iratall VPN clird - Bxitialer armirs ot mach frme Do JAPRIONS JACKE - OPEN 1
Mause is ot werdag Mcnat 0ot Aot Mo tha DOrREr AyMee ™ HAPRI0NS T OPEN 1
‘Spasars 2 oo soft Cananct get good quay of scund 1 buitn speakars SCOTT BAPRZ01S JERMANE OPFEN 1
Hepocan busted Mo of e ks work § had 10 use someore sises PG io ener tis] DN IT-APRZ01S MIGHAEL PENDING 1
Dk is Fik Mo Fmiom siace armor ke Coming b poua 1APRI0NS MAMON - OPEN 1
] Tras i3 o Bkt - T-AL2NE OUG - OPEN

Figure 7-15. Interactive report for tickets analysis

The interactive report has a built-in Search Bar, which is command central for the interactive report. All
of the end-user features are accessed through the Search Bar, which is located on the top of the interactive
report, in the standard location for a report search field. But this is so much more than just a search field! The
Search Bar includes the following:

e Finder drop-down: Represented by the magnifying glass, this feature allows the user
to select which column to filter on.

e Search field: A search field where the user can enter and find text strings.

e Report select list: A select list of all saved reports. This select list is visible only when
more than one saved report is available. We'll talk about saved reports in a moment.

® Rows-per-page selector: A select list of number-of-rows options. This function is
turned off by default, because it’s also available from within the Actions menu.

e Actions menu: A menu of actions enabled for this report—the “interactive” options of
the interactive report.

181

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

To use the search field, type a string or phrase into it and click the Go button. The interactive report lists
only results that match values you entered in the search field.

To use the Finder drop-down, click the arrow next to the magnifying glass icon to the left of the Search
Bar. This action opens a menu of the report’s column names. Selecting a column name causes the search to
be performed on the selected column only.

To use the Report select list, select one of the Report list options to navigate to the selected report. To
use the rows-per-page selector, select the desired number of rows per page to display from the select list.

To use the Actions menu, click it to expand the menu of interactive reports actions, and then select the
desired action.

Restricting Functionality by Report

As the developer, you have control over which options on the Actions menu are available to the end user
by setting options at the report level in the Page Builder. You can also control which of the preceding
components are included on the Search Bar. The Search Bar options, shown in Figure 7-16, allow you to
include the Search Bar or not and to elect which elements of the Search Bar are visible to the user. This
controls end-user functionality at the report level.

¥ Search Bar

Include Search Yes No

Bar

Search Field Yes No
Finder Drop Yes No
Down

Reports Select Yes No
List
r

Rows Per Yes No
Page Selector

Search Button
Label

Maximum
Rows Per
Page

Figure 7-16. Specifying Search Bar options

182

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

The Actions Menu toggles, shown in Figure 7-17, allow you to specify which Actions menu options
are available to the user. Of these, the Save Report, Save Public Report, and Subscription options are only
available to authenticated users. This is because APEX needs to know information about the authenticated
user to be able to save reports and send subscriptions.

¥ Actions Menu
Include Yes No
Actions Menu
r
Filter Yes No
"
Select Yes No
Columns
-
Rows Per
Page
-

Sort

g

No

No

r

r

Yes
Control Break Yes No

Yes

Yes

Highlight No
-

Compute No
-

Aggregate Yas No
-

Chan Yes No
-

Group By Yes No
-

Pivot Yes No
-

Flashback Yes No

Save Report Yes No
-

Save Public Yes | No

Report
b

Reset Yes No
r

Help Yes No

Subscription Yes | No

Download Yes No

Figure 7-17. Specifying the options for the Actions menu

183

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Restricting Functionality by Column

Specific interactive report actions can also be restricted on a column-by-column basis. For example, you can
allow the report to be filtered, but not allow a specific column to be used in a filter. By editing report columns
in the Page Builder, you can declaratively enable or disable the hide, sort, filter, highlight, control break,
aggregate, compute, chart, group by, and pivot at the column level through the individual column’s report
attributes page, as part of the Enable Users To attribute group, as shown in Figure 7-18.

¥ Enable Users To

r

Hide Yes No
f Sort Yes No
[Filter Yes No
[Highlight Yes No
[Control Break Yes No
f Aggregate Yes No
[Compute Yes No
f Chart Yes @ No
[Group By Yes No
[Pivot Yes No

Figure 7-18. Specifying individual column options

You've examined the interactive report settings available to you as a developer at the report level and
at the column level. Now, let’s take a look at interactive report features from the end-user perspective. The
following sections examine using the key features of an interactive report as an end user.

Using the Column Heading Menu

When running an interactive report, the column headings contain functionality all their own and are
perhaps the fastest way to format a single column of a report. Figure 7-19 illustrates the interactive report
column-heading features. Clicking a column heading opens a column-level menu with icon-driven options
for quick sorting, removing the column from the report, adding a break on the column, searching, and
filtering on the selected column. The Search Bar in this menu allows the end user to search for and filter
directly on the values in that column. The Remove Column option lets the user quickly remove the column
from the report. To restore the column, the user must choose the Select Columns option of the Actions
menu. The Break option adds a break on the column.

184

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Sort ASC Hide Column |

Fllter \\ Sort DESC] Control Break

Des

User called and cannot log into |

The user's PC will not turn on wt

Accidentally deleted Q2.
y e User needs more memory install

BSOD after rebooting
MSIE keeps on crashing for any

Cannot log into E-Mail

SP2 Upgrade needed in order to
Disk is Full

Funny ng PG X: drive not being mapped to \cc

Blue Screen of Death every time

8 Wireless signal not strong enough Wi-Fi signal not as strong as it w

Figure 7-19. Using the column-heading menu

If you look below the Filter text field, you will see a full list of distinct values that occur in the column.
Clicking any of these distinct values creates a filter on the column, showing only those rows that match the
selected value.

Searching by Column

The magnifying glass icon at the left end of the Search Bar is actually a list of the visible columns in the
report, which is helpful as a quick way to filter either on a specific column or on all columns. The selected
column is the column to which the search text applies.

Entering a value in the search field applies a filter to either all columns (the default) or the selected
column. Once a filter is applied, an option appears in the Control Summary region, as shown in Figure 7-20.
The Control Summary region is the area between the Search Bar and your report. This region appears only
when an action is applied to the interactive report and serves as a key to what actions are currently being
applied. The Control Summary region contains one line for each action applied. Interactive report actions
are additive: subsequent actions are applied in addition to the existing actions. The user can disable an
action by unchecking its check box. The user can remove the action by clicking the x icon for that action.
Clicking an action in the Control Summary region opens that action control for editing.

v ol E Row text contains 'memory’

k- E Status

Figure 7-20. Control Summary region when open

185

CHAPTER 7 FORMS AND REPORTS: ADVANCED

The Control Summary panel can be toggled open or closed. You can minimize it by clicking the Close
(downward-pointing triangle) icon.

The closed Control Summary region, shown in Figure 7-21, can be expanded by clicking the Open
(rightward-pointing triangle) icon.

v B oo [5eee

Figure 7-21. Control Summary region when closed

The Finder drop-down menu, accessible via the magnifying glass icon to the left of the Search Bar,
displays a list of all columns in the interactive report, as shown in Figure 7-22. Selecting one of the columns
limits the search function to that column.

Qv Go Actions v

All Columns Subject
Ticket Id N og into E-Mail User called and
Subject

ot turn on The user's PCw
Description

e memory User needs more
Assigned To

ashed 4 times MSIE keeps on ¢
Created On
Created By install SP2 SP2 Upgrade ne
Closed On drive not being mapped X: drive not beim
Status ter rebooting Blue Screen of C
Number Of Details signal not strong enough Wi-Fi signal not ;

Figure 7-22. Finder drop-down menu

186

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

The Actions menu, shown in Figure 7-23, exposes an array of column-selection, filtering, and action
options. Expanding the menu further under the Format option reveals additional actions for sorting,

breaking, highlighting, computing new columns, aggregating, charting, and grouping. The expanded Format

menu is shown in Figure 7-24.

Qv Go

Ticket Id Subject
1 Cannot log into E-Mail
2 PC will not turn on
3 Need more memory
4 MSIE Crashed 4 times
5 Need to install SP2
6 Network drive not being mapped
7 BSOD after rebooting

B Wireless signal not strong enough

Figure 7-23. Actions menu

Q-
Ticket Id Subject

1 Cannot log into E-Mail
2 PC will not turn on
3 Need more memory
4 MSIE Crashed 4 times
5 Need to install SP2
6 MNetwork drive not being mapped

7 BSOD after rebooting

8 Wireless signal not strong enough

9 | think | have a virus

an Virm Prafimitiane Matan

Actions v

D SelectColumns
N

Y Filter 59
B RowsPerPage >
L]
<), Format >
yi
(O Flashback
for
[l save Report
orc
) Reset
-
@ Help
ay
L, Download
Ja
Go | Actions ™
[0 Select Columns Description
Y Finter og into his MS Outiook e-m

B RowsPerPage >

m on when the oower buttol

(O Flashback = Control Break
[1 saveReport T Highlight
T) Reset Compute
@ Help 2. Aggregate
d
Y, Download ot Cran
 Group By

Something Is not right - | [+ Pivot

Blannamn atatine that wini smdatas s mandad Lo

Figure 7-24. Choosing a format option from the Actions menu

187

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Selecting Columns

The Select Columns action, shown in Figure 7-25, allows the user to select which columns to display and to
reorder columns as desired. The shuttle control allows the user to easily add or remove columns using the
center arrows and to order the columns that are displayed by using the up and down buttons to the right of
the region.

Select Columns X
Do Not Display Display in Report
Ticket Id S
CJ Subject ik
?> Description T
5 Assigned To v
Created On
{ Created By +
Closed On
« Status
Number Of Details

Figure 7-25. Selecting columns

Note The Select Columns action of an interactive report always controls which columns are displayed. If, as
a developer, you modify the SQL query to add a column to an interactive report, that new column won’t be visible
until the new column is moved from the Do Not Display region to the Display in Report region of the shuttle.

Filtering

The Filter action allows the user to declaratively define filters based on the result of a number of operators.
A user can define multiple filters per report. Multiple filters are combined with the logical AND operator.
Filters defined through the Search Bar are combined with filters defined in the Filter action. Currently, there
is no provision in interactive reports to implement a logical OR for filters.

The Filter action offers a full set of filter operations for selection, as shown in Figure 7-26.

188

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Filter *

Filter Type @ Column Row

Column Operator Expression

Ticket Id B(:] v

is null
is not null

like 8
not ke cace | [

4 not in
= !
ra 9 lmlwl%mﬁ ains mething is not right - PC s siow

does not contain
matches regular expression
d 10 Virus Defil between Mlessage stating that virus updates are needed kee

Figure 7-26. Applying a filter to an interactive report

The Filter action supports both column filters and row filters. Column filters are applied to a single
column. The column filter options change interactively, depending on the type of the filtered column and
the selected operator. For example, if you select a date column, such as Created On, and then select the
Between operation, the Expression element now contains two fields, for the From and To of the between
clause. In this case, the fields each have a date picker for ease in entering the Date From and To values. The
end user can also construct a custom filter using the declarative Filter.

189

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Row filters allow the user to build filter conditions that are based on multiple columns in the same
row. A simple row filter for your Analysis report might be a filter for all tickets that were closed on the same
day they were opened. The Filter expression may be built declaratively using selections in the Columns
and Functions/Operators regions, shown in Figure 7-27, or may be entered manually. Within the Filter
expression, selected columns are represented by their letter alias.

Filter X
Filter Type Column @ Row

Name Closed on Same Day

Filter Expression

E=g]
Columns Functions / Operators
A =
B. & <
c.
D. A
E >
F. Created By >
G. Closed On ABS
H. Status ADD_MONTHS
I. Number Of Details AND

= -

Figure 7-27. Building a row filter

190

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Sorting

The Sort interface allows the user to specify sorts on up to six columns in either ascending or descending
order and to specify whether NULLs are sorted first or last. The sort may be performed on both displayed and
non-displayed columns (see Figure 7-28).

Sort X
Column Direction Null Sorting
1 | -SelectCoumn-___[J Ascending [J ' Defaut B
PY - Select Column X | Ascending [Default &
Displayed -
3 Ticketld Ascending [|J Default il
4] Description Ascending Default
5 | Assigned To Ascending Default B
Created On :
6 Created By Ascending E Default a
Closed On
Status
Number Of Details

. -

Figure 7-28. Adding sorts to an interactive report

Adding Breaks

The Control Break action allows the user to define break formatting on up to six columns. The user specifies
the break column and whether the break is disabled or enabled. APEX automatically applies the declared
break formats to the report. Note that break columns appear in the Control Summary as separate entries,
letting the user enable, disable, or remove break columns individually. Figure 7-29 shows the Analysis report
with breaks applied on the Assigned To and Status columns.

Qv | Go Acions v
v =
a - B
Asaigred To : DAN, Status : CLOSED
Ticket bd Subject Description Created On Croated Dy Closed On Mumbser Of Details
2 PCwlinottunon The user's PC will not turn on when the power bution is pressed. O4-MAY-2015 RNGO - 1

Assigned To : DAN, Status : OPEN

Ticket bd Subject Description Created On Created By Closed On Mumbssr ©f Dotails
8)Enk | have a vius Something i not gt - PG s siow 2T-APR2ME ROBERT 1
12 Accidentaly deleted G2 ppt Fio G2 pot placed in Recycle Bin: bin emptied 26-APR-2018 EDDIE 1

Assigned To : DAN, Status : PENDING

Ticket Id Subpest Descrimtion Created On Created By Closed On Number O Details.
15 Gotting Out of Mamory amors 5ame DUt of Mamony Bor occles whan Ofice starts 21-APR2S oA . 1
19 Kiyboard busted Nt of tha krys work (| had 10 Usa somecns eises PG 10 enter this) VT-APR-201S MICHAEL 1

Assigred To : DOUG, Status : OPEN

Ticket kd Sublect: Descrioton Created On Croated By Closod On Number O Detalls

Figure 7-29. Interactive report with control breaks applied

191

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Highlighting

The Highlight action allows the user to find matching data and highlight it by row or column, specifying the
background and text colors for the highlight. The Highlight action interface is shown in Figure 7-30.

Highlight x
Name Assigned to Scott
Sequence 10
Enabled ves B
Highlight Type Row a
Background Color HE3EB4D ~ [yeliow] [green] [blue] [orange] [red]
Text Color #000000 i [yellow] [green] [blue] [orange] [red)
Highlight Condition
Column Operator Expression
Assigned To B - B scorr =
\
k

Figure 7-30. Adding highlighting with the Highlight action

The same operators that you saw in the Filter action apply here. The background and text colors may
be specified using either hex notation or the color palettes. The Highlight action appears in the Control
Summary region as a highlighted row.

192

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Computing Columns

The user can define a new column as a computation based on existing columns and functions via the
Compute action interface, shown in Figure 7-31.

Compute x
Computation - New Computation - a
Column Heading Days to Close Format Mask |999G999G999G999G999GIS x|
Computation Expression
G-E
Columns Keypad Functions / Operators
A Ticket Id () =
B. Subject 78 9 < '
C. Description 4 5 B + <
D. Assigned To 1 2 3 =
E. Created On 0 >
F. Created By space i S
G. Closed On ABS
H. Status ADD_MONTHS
L. Number Of Details AND
BETWEEN

CASE

Create a computation using column aliases.
Examples:

1. (B+Cy100

2. INTCAPB)]|", '[INITCAP(C)

3. CASE WHEN A = 10 THEN B + C ELSE B END

== -

Figure 7-31. Computing a new interactive report column using the Compute action

The user may either declaratively or manually define the computed value. The declarative interface is
much the same as the row filter interface. Columns are specified in the computation as their letter aliases.
This option is quite powerful, because it allows the end user to build essentially any column they desire.

193

CHAPTER 7 FORMS AND REPORTS: ADVANCED

Adding Aggregates
The Aggregate action performs one of the following aggregation functions on a column:
e Sum
e Average
e Count
e Count Distinct
e Minimum
e Maximum
e Median

The selected column must be of data type NUMBER. The results are displayed at the end of the report.
Note that aggregate results are displayed only if the corresponding column is also displayed.

Adding Charts to Interactive Reports

The Chart action allows the user to display a dynamic Flash chart representation of the data in the report,
as shown in Figure 7-32. The chart representation of the data is displayed instead of the tabular data
representation. The display can be toggled by clicking the View Chart icon, as indicated in Figure 7-32.
Use the Edit Chart link to reenter the Chart action interface.

Q~ Go E dio Actionsv
&

Figure 7-32. Interactive report pie chart

194

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

The following chart types are supported in an interactive report:
e Horizontal bar
e Vertical bar
e Pie
e Line

The simple Chart action interface, shown in Figure 7-33, allows the user to select the chart type and
assign a label column, a value column, a function, and a column to sort by.

Chart b
Chart Type =5 ol

£ Olu Ol@ Ok
Label Assigned To d
Value Ticket Id %]
Function = Count E
Sert Value - Descending

Figure 7-33. Adding a chart using the Chart action

The user doesn’t have the full functionality of APEX charts within the Chart action, but the ease of
displaying these most common chart types is quite valuable.

195

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Grouping

The Group By action allows the user to define groups and then aggregate functions on those groups, thus
letting the user declaratively define their own summary views of the report data. A sample result of using the
Group By action is shown in Figure 7-34.

| Qv | Go E do = Actonsv
View Group By
v Edit Group By
Assigned To % of Total

4.76
™ 19.05
SCOTT 28.57
DAN 23.81
DOUG 23.81

Figure 7-34. Grouping using the Group By action

Like the Chart view, the Group By view of the data has a display icon in the center of the Search Bar, as
indicated in Figure 7-34. The user may display the data view, the Group By view, oy, if defined, the Chart view
of the data by clicking the appropriate display icon.

196

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Pivot

The Pivot action allows the user to define a pivot view of the data in the report, giving the user full control over
the columns to pivot, the columns to display as rows, and the columns to aggregate with one of the available
aggregate functions. A sample of the settings and the resulting Pivot report are shown in Figure 7-35.

Pivot

Pivot Columns
t | Assigned To B
? - Seect Pivot Column - [
Aad Pivot Colurnn
Fiow Columns
1 Stas B
2 - Seiect Row Coemn - [
Add Fow Column

Functions Column Label Format Mask Sum
! Gount B roetu B s ot Assigned Tickets 9200:099G:0990299G,920 |
2 . Sewct Function - -SewctCowmn- []

Add Function

0 v e B & B {7 Ademv
T b\'\m Pivot
» D Edit Pivot
DAN DOUG SCoTT ™™ null
Staus. ¥ of Assigned Tickets ¥ of Assigned Tickets ¥ of Assigned Tickets " of Assigned Tickots ¥ of Assigned Tickets

CLOSED 1 o 3 o o
OPEN 2 4 3 4 o
PENDING 2 1 o o o

Figure 7-35. A Pivot report generated using the Pivot action

197

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Using Flashback

The Flashback action enables the user to flash back the database by the specified number of minutes to see
what the data looked like at that point in time. The option is built on the Oracle database FLASHBACK feature.
Database FLASHBACK must be enabled. The Flashback action asks for the number of minutes to flash back, as
shown in Figure 7-36.

Flashback X

A flashback guery allows you to view the data as it existed at a previous point in time.
Asof 15 minutes ago.

Figure 7-36. Using the Flashback action

The length of flashback time is configurable. The maximum flashback period is based on the UNDO _
RETENTION parameter in the database, which is set to three hours by default.

Saving an Interactive Report

The Save Report action allows the user to save the current configuration of the interactive report as a named
report. If the end user is also an APEX developer, the user will see the Save As Default Report Settings option,
shown in Figure 7-37.

Save Report %

Save As Named Report e) [Only displayed for developers) |

Name A5 Named Repor Public
As Default Report Settings

Description

=

Figure 7-37. Saving an interactive report using the Save Report action

198

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

As a developer, you want to try to pre-create the versions of the report that you feel will be the most
widely used by the largest subsection of users. You may save the current report configuration as being either
the primary or the alternative default report settings, as shown in Figure 7-38. The primary report is the one

that any brand-new user sees by default when logging on to the system. If alternative default reports exist,
the user is able to choose them from the select list.

Save Default Report X

The current report settings will be used as the default for all users.

Default Report Type Primary @ Alternative

Name Tickets by Assignee

-

Figure 7-38. Setting an alternative saved report

Obviously you can’t pre-create every possible iteration of a report. Therefore, the user may save reports

as private reports. When a report is saved, it’s added to the Reports menu in the Search Bar, as shown in
Figure 7-39.

Qv Go

Actions v

Default

1. Primary Report
> Tickets by Status Status 2. Tickets by Assignee
Private

Status : CLOSED

Figure 7-39. Using the default Reports menu

199

CHAPTER 7 FORMS AND REPORTS: ADVANCED

Resetting an Interactive Report

The Reset action, shown in Figure 7-40, restores the current report to the default settings. Any changes in
formation or result set (by filtering) are lost, unless, of course, the report is a saved report. It may then be
reinstated simply by selecting the report name from the select list.

Reset X

Restore report to the default settings.

o | 2

Figure 7-40. Resetting an interactive report to its default settings

Getting Help

The Help action opens a window that contains interactive report-specific help, as shown in Figure 7-41. All
of the interactive report options are displayed in this Help window, regardless of whether they’re enabled for
the current report.

[RoN Help
P vmS0apxS00swwy_flow_utilities. show_ir_hedpTp_app_id=2864p_worksheat_id=1234111058963278644p_lang=en [ina
Interactive Report Help

Interactive report regions enable end users to customize reports. Users can alter the layout of report data by selecting columns, applying filters,
highlighting, and sorting. Users can also define breaks, aggregations, charts, group bys, and add their own computations. Users can also setup a
subscription so that an HTML version of the report will be iled to them at a designated interval. Users can create multiple variations of a
report and save them as named reports, for either public or private viewing.

The sections that follow summarize ways you can customize an interactive report. To learn more, see "Using Interactive Repons” in Qracle

Search Bar

At the top of each report page is a search region. This region (or Search bar) provides the following features:

+ Select columns icon enables you to identify which column to search (or all).

» Text area enables you to enter case insensitive search criteria (wild card characters are implied).

« Go button executes the search. Hitting the enter key will also execute the search when the cursor is in the search text area.
« Reports displays alternate default and saved private or public reports.

« Actions Menu enables you to customize a report. See the sections that follow.

Actions Menu

‘The Actions menu appears to the right of the Go button on the Search bar, Use this menu to customize an interactive report.

Select Columns

Used to modify the isplayed. The on the right display. The columns on the left are hidden. You can reorder the displayed
columns using the arrows on the far right. Computed col are | d with **,

Filter

Figure 7-41. The Interactive Report Help page

200

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Adding a Subscription

The Subscription action allows the user to email a report to designated email addresses on a scheduled
basis. The user enters the email address, subject, frequency, and start and end dates, as shown in

Figure 7-42. This action is available for authenticated users only. The email received is a searchable HTML
version of your report. Break formatting and highlighting aren’t preserved.

Subscription X

Emall Address |nfo@example.com

Subject Tickets by Status
Frequency Daily =
Starting From | 24-JUL-2015 11:58:39 f&) Ending 30-Sep-2015 11:58:00

)

Figure 7-42. Subscribing to an interactive report

If a subscription for the current user is in effect, you can edit that subscription by using the Subscription
action again. The form then presents the current subscription attributes and allows the user to either change
or delete the subscription. The interface is exactly like that shown in Figure 7-42, the only addition being a
Delete button.

Report subscriptions can also be managed by a Workspace Administrator through the Administration
Home Page » Tasks Menu » Interactive Report Settings » Subscriptions interface, as shown in Figure 7-43.

2 | Go | Actions Reset Dedete A

Application Page Region Subscribed By Frequency Email To Created Created By Status.

286 300 Anahysis APRESS Daity Info@example com 3 minutes ago APRESS Submitted

Figure 7-43. Managing subscriptions through the manage-subscriptions interface

201

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Downloading
The Download action allows the user to download the current result set of their report in one of the
following formats:

e CSV

e HTML

e Email

e PDF

e XLS (MS Excel)
e RTF (MS Word)

The latter two formats require Oracle BI Publisher, which may require a separate license from Oracle.
The email option will only be available if your APEX administrator has configured APEX to integrate with
an external email server. Figure 7-44 shows the download options without and with BI Publisher. You can
specify which formats are available in the Download attributes region, as shown in Figure 7-45.

Download X

Choose report download format:

4 vy . v
csv HTML Email POF
Cance!
Download x

Choose report download format:

=y gy 5 = (g e
v Erhe _demes

v A= 4

csv HTML Email xS PDF RTF

| Cancel

Figure 7-44. Choosing download options, without and with BI Publisher

202

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

¥ Download
=

Download csv

Formats HTML
Email
XS
PDF
RTF

CSV Separator

CSVEnclosed *
By

Filename i tickets.csy [

Figure 7-45. Specifying download attributes

Reports downloaded in CSV format are plain, comma-delimited data. The content and order of data in
the result set are retained in the CSV file, but break formatting and highlighting aren’t.

Reports downloaded in HTML format are a searchable HTML version of the result set, as shown in
Figure 7-46. Again, the result set content is preserved, but the break formatting and highlighting aren’t.

Search
Ticket Assigned Created Number Of
Status d Sublect Description To Created On By Closed On Details
OPEN 1 Cannot log into E-Mal User calied and cannat log nte his MS Outicok a-mail Account, SCOTT 05-MAY-2015 PAUL 0S-MAY-2015 2
CLOSED 2 PCwilnot tum on TN L 5 S I 1 S e R DAN 04-MAY-2015 RINGO S 1
pressed
OPEN 3 Need more memory User neecs mare memary Instaliod oG O3-MAY-2015 GEORGE = 1
CLOSED 4 MSIE Crashed 4 times MSIE keeps on crashing for any site SCOTT O2-MAY-2015 JOHN - 1
OPEN 5 MNeedtoinstad SP2 SP2 Upgrade neeaed in order 1o bi compant ™ O1-MAY-2015 ALEX - 1
OPEN B MNetwork drive not baing mapped X: drive not being mapped to \corpishare ™ 30-APR-2015 GEDDY = 1
OPEN 7 BSOD after rbooting Blut Scroan of Death evory time system is rebooted oG 20-APR-2016 NEAL 1
CLOSED B Wiwiess sgralnot stong enough WI-Fi signal ot as strang as it was last week SCOTT 28-APR-2015 JOHN 04-MAY-2015 2
OPEN 9 Ithink | have avins Somesning is not right - PC is siow oAN 2T-APR-2015 ROBERT - 1
CLOSED 10 Virus Definftions Dates PSS WA N VI Uy Sl e SCOTT 26-APR-2015 JOHN - 1

Figure 7-46. The searchable HTML download of an interactive report

203

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

The email download is the same output as the HTML download, but delivered in an email. The XLS
and RTF download formats require integration with Oracle BI Publisher, which may require a separate
license from Oracle. The PDF output can be accomplished via either Oracle Rest Data Services, an
external Formatting Objects Processor (FOP), or BI Publisher. A complete description of the use of Oracle
BI Publisher to produce reports in these formats is beyond the scope of this book. See the Oracle APEX
documentation section “Advanced Printing Options and Configuration” for more details. If these options
aren’t configured for your installation, they won’t appear in the download options list.

Take some time to experiment with the features of the interactive report. If you get lost and need to start
over, simply click the Actions button and select Reset. The interactive report will be reset to its original state,
and all modifications that you made to it will be discarded.

Modifying an Interactive Report

Although an interactive report offers a tremendous amount of functionality, you may wish to limit which
features are available to your end users. Each feature of the interactive report can be disabled on a report-
by-report basis. In addition, you can set up default options for a specific report, making those available to all
end users.

Adding Attributes and Removing Columns

Let’s take another look at your interactive report. You can use a combination of interactive report end-user
actions and developer settings to achieve modifications. First, remove a column from the report and add a
sort attribute using the Actions menu:

1. Run the application and navigate to the Analysis menu item.
2. Click the Actions button to display the Actions menu.

3. Select the Select Columns option, as shown in Figure 7-47.

Qv Go | Actions v

Ticket [0 Sselect COW

Id Subject Des

v Filter

| intc
B RowsPerPage >

1 Cannot log into E-Mail

2 PC will not turn on 9\ Format » on?

Figure 7-47. Selecting the Select Columns option

204

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

4. Move Ticket Id to the Do Not Display section of the shuttle, as shown in
Figure 7-48, by double-clicking its name.

5. Using the up and down arrows, reorder the remaining columns so that Status
appears after Subject and before Description, as shown in the Display in Report
section in Figure 7-48, and click Apply.

Select Columns x
Do Not Display Display in Report
Ticket Id Iy h) Subject T
7> Description T
3 Assigned To 70
Created On
{ | Created By + |
« Closed On
Number Of Details i

Figure 7-48. Selecting columns

Notice that the Ticket Id column is no longer displayed in your report and that the Status column
appears immediately after the Subject column.

Next, you can set your changes as default options for the interactive report. These options will be
applied for all end users who use the interactive report. The Save As Default Report Settings option is only
available to end users who are APEX developers:

6. Click the Actions button and select the Save Report item.

205

CHAPTER 7 FORMS AND REPORTS: ADVANCED

7. SetSave to As Default Report Settings, as shown in Figure 7-49.

Save Report >
save _As Named Report 2] (Only displayed for developers)

Public

= -
Figure 7-49. The Save As Default Report setting

8. Theregion immediately changes, allowing you to save the report either as the
primary default or as a named alternative. Make this one the Primary default, as
shown in Figure 7-50. Click Apply.

Save Default Report X

The current report settings will be used as the default for all users.

Default Report Type (@ Primary () Alternative

= - |

Figure 7-50. Saving a primary interactive report

206

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Now, create a named alternative default report that does a control break on the Status column:

9. Click the Actions button and navigate to Format » Control Break, as shown
in Figure 7-51.

Go Actions v
Status (D Select Columns Description

open Y Filter 3t log into his MS Outlook e-n
B RowsPerPage >

CLOSEC turn on when the power butt
(O Fiashback "= Control Break

CLOSEC h'
[1 save Report Y Highlight

OPEN
) Reset Compute

OPEN
@ Help z Aggregate

OPEN Jo Chart oter
., Download

CLOSEC = Group By
B2 Subscription

[.
OPEN Somathling Lraweghl 125 POl
1 OSFND Me<scane statina that vine undates are neaded kea

Figure 7-51. Selecting the Control Break action

10. Select Status in the first Column select list and make sure it’s set to Enabled, as
shown in Figure 7-52. Click Apply.

Control Break X

|

Column Status

1 [Status B Enebes B
2 -SelectCoumn- [Enabled B |
3 -SelectColumn- [Enables B
4 -SelectColmn- [J Enabled [!
5 -SelectCoumn- [Enabled B |
6 -SelectCoumn- |J Enabled

|
= - |

Figure 7-52. Applying a control break to an interactive report

207

CHAPTER 7 FORMS AND REPORTS: ADVANCED

11. Click the Actions button and select the Save Report option.

12. Set Save to As Default Report Settings, as shown in Figure 7-53.

{Oniy displayed for developers)
Pubiic

el |

Figure 7-53. Saving an interactive report as a default setting

13. The region immediately changes. This time, save the report as a named
alternative: select Alternative for Default Report Type, enter Tickets by
Status for Name, as shown in Figure 7-54, and click Apply.
Save Default Report X

The current report settings will be used as the default for all users.

Default Report Type Primary @ Alternative

Name Tickets by Status| |

Figure 7-54. Saving on interactive report as an alternate report

The toolbar at the top of the report now has a new Reports select list that contains both your default and
alternative reports, as shown in Figure 7-55.

Analysis

Qv Go [[z TorwisbySas | § | Actonsv

Default
| 1. Primary Report
b Alternative Default: Tickets by Status 2. Tickets by Status]

Figure 7-55. Reports select list showing both the primary and named alternative reports

208

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Selectively Enabling and Disabling ltems

As a developer, you can selectively enable or disable items from the Actions menu. Doing so restricts which
options are available to the end user for a specific interactive report. Here’s an example to work through:

1.
2.

¥ Actions Menu

Include
Actions Menu

Control Break
b
Highlight
-
Compute
r
Aggregate
’
Chart
Group By
r
Pivot
r
Flashback
r
Save Report

Reset

Help
r

Subscription
r

Download

Edit Page 300 of the application.

Edit the Analysis report’s interactive report properties by clicking the Attributes
node in the Rendering tree.

Scroll down to the Actions Menu attributes group. Set Flashback and Save
Report to NO and set Subscription to YES, as shown in Figure 7-56.

Yes No

i

No

i

No

i

No

No

No

No

No

No

No

No

£ #| |¥| & & | & F

No

i

No

*
&
- 3
5}

No

No

No

£ & & &

No

Figure 7-56. Selecting Actions menu options

4,

Save your changes.

Run your report again, and then click the Actions button to expand the actions menu. Notice that the
Flashback item is no longer present. And while we turned Save Report off, you can still save reports because
you're logged in as a developer to the underlying workspace. Standard end users won'’t see this option. You
should also see a new option for subscriptions.

209

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Limiting

an Action to Specific Columns

In addition to controlling which actions appear for an interactive report, you can get even more granular
and determine on which columns a specific action can be performed. Figure 7-57 shows the column-level
Actions settings for your interactive report. Proceed as follows:

1.
2.

Edit Page 300 of your application.

Expand the Columns node under the Analysis Interactive Report node in the
Rendering tree and select the Description column.

In the Enable Users To attribute group, set the Sort and Filter attributes to NO.
Save your changes.

Run Page 300 of your application.

¥ Enable Users To

[Hide
[Sort
[Filter
[Highlight
r
Control Break
[Aggregate
[Compute
[Chart
[Group By

Pivot

Yes No
Yes No
Yes No
Yes No
Yes No
Yes No
Yes No
Yes No
Yes No
Yes No

Figure 7-57. Selecting column-level actions for an interactive report

6.

210

Click the Actions button and select Format » Sort. The Sort action interface
should look similar to Figure 7-58.

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Sort x
Column Direction Null Sorting
1 | -SelectColumn- . [} Ascending [Defaut E
2 - Select Column - "5? ndin a Default a
Displayed ’ :
a| Subject Ascending [Default %]
4 itsf;?\ed To Ascending a Default a
5 Created On Ascending a Default a |
Created By " —
6 Closed On Ascending [Default %)
Number Of Details
Other
Ticket Id |

== -

Figure 7-58. Modified Select Column list
7. Notice that Description no longer appears as a column name in the list of
columns.

By default, the interactive report links to something called Single Row View. This view shows a read-only
region that contains all the details about a specific row. In this case, you may want to link back to the form
you created on page 210. In this case, you can alter the interactive report to use a more traditional page link
instead of the Single Row View. You do this by editing the Link Column attributes, as shown in Figure 7-59:

8. Edit Page 300 of the application.
9. Click on the Attributes node for the Analysis Interactive Report.
10. Inthe Link attribute group, set Link Column to Link to Custom Target.

11. Click on the Options Dialog button for the Target attribute.

211

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

12. Inthe resulting dialog, make sure Type is set to Page in This Application, set
Page to 210, enter P210_TICKET_ID for the Name and #TICKET_ID# for the Value
on the first line, and then click OK (see Figure 7-59).

Link Builder - Target X

¥ Target
r
Type Page in this application
r

Page 210 ~
¥ Set Items

Name Value
P210_TICKET_ID -~ #TICKET_ID# -~ x

¥ Clear Session State

Clear Cache ~
-

Reset Yes No

Pagination

» Advanced

car cel m

Figure 7-59. Setting the Link Column attributes

13. Save your changes.

Name and Value tell the link to pass the current ticket’s ID (identified by #TICKET ID#) and assign it to

P210_TICKET_ID in session state.
Run page 300 of your application. You should now be able to drill into the details of any row by clicking

in the column with the Edit link.

Looking Behind the Scenes

Let’s look behind the scenes of the interactive report. You may be surprised to see that there is only a single
interactive report region in the Rendering tab, as shown in Figure 7-60.

212

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

RSN & | B ¢
Rendering =l 0 || Bv Processing Ell 0= || B Page Shared Components =1
Page 300: Analysis After Submit Lists of Values
Pre-Rendering Validating Lists
Regions Processing Authorizations
Breadcrumb Bar After Processing Build Options
Content Body AJAX Ce Data Load Tables
Analysis Web Service References
Columns
Attributes

Post-Rendering

Figure 7-60. The Application Builder view of the interactive report

The Processing tab contains no elements, and the Shared Components tab contains only the expected
elements.

This is the first case where you can’t easily re-create the interactive report using standard declarative
APEX elements. The additional functionality is from a collection of JavaScript functions, CSS, and HTML that
are all contained within the interactive report region type. Although you could build this from scratch, the
APEX interactive report is a huge timesaver.

Calendars

Sometimes there are trends in data that aren’t obvious when viewed in the traditional row/column format.
By simply displaying data in a different way, such as in a calendar report, trends can become obvious. The
APEX calendar report can display data in a daily, weekly, or monthly view and doesn’t require that you enter
any SQL.

213

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Understanding Calendar Types

An APEX calendar is a type of APEX report. Data is rendered on a calendar instead of in a traditional row/
column format. The single requirement for an APEX calendar is that the underlying table or view must have
atleast one DATE column.

There are two types of APEX calendars:

e Calendar: This is based on an open-source jQuery component and gives quite a lot
of functionality out of the box.

e Legacy Calendar: This uses the calendar region type that was available up through
APEX 4.2 and has less functionality than the new jQuery-based calendar.

Data in a calendar can act as a column link, the same as in any other report column. This makes it
simple to build a calendar that lets the user click a date and drill to another page or URL.

Creating a Calendar

To implement an APEX calendar, you can create a new page and a Calendar region using the Create Page
wizard. Here are the steps to follow:

1. Navigate to the Application Builder Home Page for your application.
Click the Create Page button in the upper right of the screen.
Select Calendar and click Next.

Again, select Calendar and click Next.

LA

As shown in Figure 7-61, enter 400 for Page Number and Ticket Activity
Calendar for both Page Name and Region Name, and set Breadcrumb to
Breadcrumb.

214

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Create Page x
] @

Page and Region
Attributes

Identify a page number and name.
Region Type Calendar
y Page Number 400
* Page Name Ticket Activity Calendar

*
Page Mode Normal

<>

" Region Name Ticket Activity Calendar

Breadcrumb | : Breadcrumb | e

Figure 7-61. Creating a ticket activity calendar

6. When the page reloads, enter Ticket Activity Calendar for Entry Name and
click Next (see Figure 7-62).

Breadcrumb Breadcrumb

<>

Parent Entry No parent entry

>

4 Entry Name Ticket Activity Calendar

Figure 7-62. Specifying the breadcrumb entry for the calendar

215

CHAPTER 7 FORMS AND REPORTS: ADVANCED

7. Set Navigation Preference to Create a new navigation menu entry. When the
page refreshes, enter Calendar for New Navigation Menu Entry and click Next
(Figure 7-63).

] o @

Navigation Menu

Navigation Preference Do not associate this page with a navigation menu entry
© Create a new navigation menu entry

Identify an existing navigation menu entry for this page

i New Navigation Menu Entry Calendar

Parent Navigation Menu Entry - No parent selected -
Home
.. (Submit a Ticket)
.. (Contact Us)
Tickets
Analysis

< Cancel

Figure 7-63. Specifying tabs for a calendar

216

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

8. Make sure the Source Type is set to Table, select your schema as the Table/View
Owner, select TICKETS_V (view) for Table/View Name, as shown in

Figure 7-64, and click Next.

Create Page X
o o @ @
Source
Source Type @ Table SQL Query
" Table/ View Owner APRESS

g Table / View Name TICKETS_V (view)

*
Select Columns

[4

»

«

< Cancel

w

TICKET_ID (Number) T
SUBJECT (Varchar2)

DESCRIPTION (Varchar2)

ASSIGNED_TO (Varchar2)

CREATED_ON (Date) 4
CREATED_BY (Varchar2) .

CLOSED_ON (Date)
STATUS
NUMBER_OF_DETAILS (Number)

Figure 7-64. Specifying the table owner and table name for a calendar

The next step in the wizard allows you to choose what is displayed on the calendar, as well as the begin
and end dates. Also, on this page you can choose how you want to see the date displayed (Date only or Date

and Time).

There are also options that will automatically generate a create page or an edit page, and choose
whether or not you want to be able to use drag and drop on your calendar to alter the begin and end dates of

an event.

217

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

We're going to use Page 210 for our create and edit pages, but we do want to turn Drag & Drop on.
Continue as follows:

9. For Display Column, select SUBJECT.

10. For Start Date Column, select CREATED_ON. For End Date Column, select
CLOSED_ON.

11. Set Show Time to Yes.

12. Set Add Create Page and Add Edit Page to No.

13. Set Generate Drag & Drop Code to Yes.

14. Click Next.

15. Set Primary Key Type to Select Primary Key Column(s).

16. Select TICKET _ID(Number) as the Primary Key Column.
17. Click Next.

18. Set Source Type to Existing Trigger and click Next.

19. Click Create.

Run the Calendar report, and you'll see something similar to Figure 7-65. Hovering over any of the event
bars will show a hover-hint with more of the subject and date information displayed. Since we turned on
Drag & Drop, you can click and drag any event to change its Created On date.

Ticket Activity Calendar
3 [5] frcer May 2015 monn | wesk oy ks
Sunday Monday Tuesday ‘Wednesday Thursday Friday Saturday

1 2
 Vius Dotintons Dates] | ek I navea v}

(-] 7 B 9

3 4 5
Moo mors memory ____J PCwlinattumen] Gannotiog rto E-Ma
10 1 12 14 15 16

‘Wireless signal not strong
17 enough 21 2 2

24

Figure 7-65. The Calendar report as generated by the wizard

218

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

There are a few tweaks that we can make to the calendar to provide some more information to the
viewer and to link it with the Ticket edit screen on Page 210:

1. Edit Page 400 of the application.

2. Edit the Attributes of the Ticket Activity Calendar.

3. Locate and open the file ch7_calendar_details.txt, which you can find where
you extracted the book files. Copy and paste the contents of that file into the
Supplemental Information text area under the Settings attributes group, as
shown in Figure 7-66.

¥ Settings

Display SUBJECT

Column

Start Date CREATED_ON v
Column

End Date CLOSED_ON <
Column

Show Time Yes No

Time Format Default o
First Hour 9

Supplemental Information) =
DESCRIPTION:

EDESCRIPTION.

Assigned to:

BASSIGNED_TO.

Status: &STATUS.
of Detail Records: &mER_DF_DE'MII.S.l

Figure 7-66.

Setting calendar Supplemental Information attribute

219

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

4. Click the Options button next to View/Edit Link. The button should say No Link
Defined.

5. Inthe resulting pop-up dialog, set the Page to 210, set Name to P210 TICKET ID,
set Value to &TICKET ID., set Clear Cache to 210, as shown in Figure 7-67, and
then click OK. Save your changes.

Link Builder - View / Edit Link

¥ Target

Type Page in this application %
[Page 210

¥ Set ltems

Name Value

P210_TICKET_ID ~ ATICKET_ID. b

¥ Clear Session State
Clear Cache 210

Reset Yes No
Pagination

* Advanced

Cancel Clear m

Figure 7-67. Setting the View/Edit Link attributes

220

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Run the page, and your calendar should look similar to that in Figure 7-68. When you hover over an
event bar now, you can see more of the ticket detail. You can now also click the event bars to edit the Ticket
details.

Ticket Activity Calendar

1| » || waey May 2015 month | week day kst

Tuesday Wednesday Thursday Friday Saturday

Figure 7-68. The altered ticket activity calendar

Note If the data being shown in the Supplemental Information may contain special characters such as & * “
or / APEX will attempt to encode them to reduce the risk of Cross-Site scripting. If you trust the source of the data,
you can edit the Calendar region, and in the Security attributes section, set “Escape Special Characters” to No.

221

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Looking Behind the Scenes

Now that your calendar works, let’s look at what the Calendar wizard built for you. Edit page 400. In the
Rendering tab, shown in Figure 7-69, you'll basically see only the Calendar region.

B & ca ie)
Rendering ;; Si v

Page 400: Ticket Activity Calendar

Pre-Rendering
Regions

Breadcrumb Bar

Breadcrumbs [Global Page]

Content Body

:::| Ticket Activity Calendar
Post-Rendering

After Regions

Before Footer

After Footer

Figure 7-69. Page Rendering region for your calendar

Notice that there are no processes in the Processing tab of the page. That is because the Calendar region
uses JavaScript calls to get the data from the database as well as to change any values that shift based on the
drag and drop action. This is just a brief example of what JavaScript and jQuery can do.

Charts

In APEX 4.2, charts got a major facelift with the incorporation of AnyChart 6, and that facelift has extended
into APEX 5.0. Not only does this release of AnyChart produce charts that look much more professional than
in previous releases, but the charting engine also provides the option to use either Flash-based or HTML5-
based charts. This is a huge leap forward for applications aimed at the mobile market, because HTML5
charts render on most modern browsers with no need for extra plug-ins.

The beauty of the new charting engine is that you can flip between rendering Flash and HTMLS5 charts
at any time during the development of the page, and the declarative data remains the same, regardless of the
choice of rendering.

HTMLS5 charts also maintain the same level of interactivity that Flash charts have, including hover and
click-and-drill functionality.

222

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Figure 7-70 shows both the Flash version and the HTMLS5 version of a bar chart, showing that, although
the look changes a certain amount, the same code generates very similar charts.

Fiash Chart HTMLS Chart

Flash Chart HTMLS Chart

NG ousEn o e D N

Figure 7-70. The same chart rendered with Flash and HTML5

Flash and HTMLS5 charts have almost identical functionality, but HTML5 charts are able to render
natively on any platform, whereas Flash charts will not work on any of the Apple mobile platforms.

Writing Queries for Charts
APEX charts generally need a query of this type:

SELECT

link,

label,

value
FROM

table
WHERE

where conditions
GROUP BY

group by column list
ORDER BY

Order by column list

where
e linkisalink to an APEX page or other URL;
e label is the label for the chart element; and

e valueis the value to be charted.

223

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

The exact syntax changes slightly to suit the needs of the various chart types, but the general link-
label-value format remains the same. For the correct syntax for each chart type, see the APEX online
documentation.

Creating a Chart

Let’s create a pie chart that shows the count of tickets in each status. Later, you'll link the action of clicking a
pie piece to filtering the tickets report to show only tickets of that status. Follow these steps:

1. Edit any page of the application.

2. Click the Create (+) button in the Page Designer toolbar and select Page.

3. Select Chart and click Next.

4. Select HTMLS5 Chart from the select list.

5. When the page refreshes, select Pie & Doughnut and click Next.

6. Select 2D Pie and click Next.

7. Enter 500 for Page Number and Tickets by Status for both Page Name and
Region Name, and set Breadcrumb to Breadcrumb (see Figure 7-71). When the
page reloads, enter Tickets by Status for Entry Name and click Next.

Create Chart x
o Q
Page and Reglon
Attributes
¥ Page Number 500

. Page Name Tickets by Status
i Page Mode Normal
Reglon Template Standard
¥ Region Name Tickets by Status
Breadcrumb Breaderumb
Parent Entry No parent entry

Entry Name Tickets by Status

L

Figure 7-71. Setting the Page Number, Page Name, and Region Name attributes for a chart

224

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

8. Set Navigation Preference to Create a new navigation menu entry. When the
page refreshes, enter Chart for Tab Label and click Next (see Figure 7-72).

o 9 @

Navigation Menu

Navigation Preference Do not associate this page with a navigation menu entry
o Create a new navigation menu entry

Identify an existing navigation menu entry for this page

* New Navigation Menu Entry Chart

Parent Navigation Menu Entry - No parent selected -
Home
(Submit a Ticket)
. (Contact Us)
Tickets
Analysis
Calendar

< Cancel

Figure 7-72. Setting the navigation attributes for a chart

9. Set Chart Title to Ticket Statuses and click Next.

10. Locate and open the file ch7_chart_query.txt, which you can find where you
extracted the book files. The contents of the file should be similar to this query:

SELECT
'f?p=8APP_ID.:200:" || :APP_SESSION || '::::P200 STATUS ID:' || sl.status id link,
sl.status label,
count(*) value
FROM
tickets t,
status_lookup sl
WHERE
t.status_id = sl.status_id
GROUP BY
sl.status_id, sl.status
ORDER BY
3 DESC

225

CHAPTER 7 FORMS AND REPORTS: ADVANCED

11. Paste the contents of the file ch7_chart_query.txt into the Enter SQL Query
or PL/SQL Function Returning a SQL Query region, or type the previous query

into the region, and click Next.
12. Click Create.

Run the page. Your chart should look similar to the one in Figure 7-73.

Ticket Statuses

CLOSED -4

PENDING - 3

OPEN - 14

Figure 7-73. The Ticket Statuses chart

Filtering Data for a Chart

The link that you included in your SQL statement passes a status value to the P200_STATUS_ID field on
page 200. However, you haven't created that item yet. The next steps create the item P200_STATUS_ID
on page 200 so that, when a slice of the chart is clicked, the report can filter based on the status:

1. Edit Page 200 of the application.

2. Create a new item by dragging a Select List item from the Items section of the
Component Gallery into the Tickets region. Place it just in between the
P200_SEARCH item and the P200_GO button, as shown in Figure 7-74.

226

CHAPTER 7 I FORMS AND REPORTS: ADVANCED
CONTENT BODY
EH Tickets
COPY EDIT PREVIOUS NEXT

ITEMS

‘ P200 GO

P200_SEARCH ’
Select List

REGION CONTENT

SUB REGIONS
CLOSE HELP DELETE CHANGE CREATE

MANAGE_MULTIPLE_TICKETS CREATE

Figure 7-74. Adding a select list item

3. Inthe Edit Attributes pane, set the Name to P200_STATUS _ID and the Label to
Status. (See Figure 7-75).

¥ |dentification

Narme P200_STATUS_ID
r

Type Select List c||i=
¥ Label

Label ‘Status] |

Figure 7-75. Setting the name and label

227

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

4. Inthe List of Values attribute group, set Type to Shared Component and List
of Values to P210_TICKETS_STATUS_ID, ensure that Display Null Values is set to
Yes, enter - All Statuses - for Null Display Value, and enter % for Null Return
Value.

5. Inthe Default attribute group, set Type to Static Value and enter % for the Static
Value, as shown in Figure 7-76.

¥ Default

Type Static Value

Static Value |

%

Figure 7-76. Setting the default

6. Save your changes.

Again, by default, the labels of both the Search and Description fields are set to occupy three columns of
the layout grid. Let’s change this so that they only take up one column each:

1. Multi-select P200_SEARCH and P200_STATUS_ID.

2. Inthe Edit Attributes pane, navigate to the Grid attribute group and change the
Label Column Span to 1.

3. Save your changes.

Finally, you have to change the query for the Tickets report on page 200 to account for the value of the
item P200_STATUS_ID is set to:

4. Edit the Tickets report on page 200 by clicking its name.

5. Append the following line to the end of the query and Save your changes:
AND tickets.status_id LIKE :P200_STATUS_ID
Now, run the application and navigate to the Chart page. Click any value in the chart, and that value

should be passed to the Tickets page and in to the Status filter. The resulting report should only display those
records that correspond to the status that was clicked in the chart.

228

CHAPTER 7 © FORMS AND REPORTS: ADVANCED

Looking Behind the Scenes

Viewing the Chart page in the Application Builder, you can see that the only element generated is the Chart
region in the Page Rendering region, as shown in Figure 7-77. The Chart region is interesting in that it has a
Series element, which contains your SQL query. The Chart region embodies the logic that passes your query
to the AnyChart engine to produce the chart.

fri & ca &

O
Rendering ;.z g; Sv
[Page 500: Tickets by Status
Pre-Rendering
Regions

Breadcrumb Bar
Content Body
Tickets by Status
Attributes
Series
Series 1

Post-Rendering

Figure 7-77. Rendering tab of the Ticket Statuses chart

Summary

You've reviewed most of the APEX forms and report types, and you've walked through building various
forms and reports for the Help Desk system using the APEX form and report wizards. You have created an
interactive report and made adjustments as both a developer and an end user. You've been introduced to
charts, and you added a chart to the application to visualize your ticket status.

The common theme here is that the APEX form and report wizards are huge time-savers for developers,
creating all the objects—items, buttons, branches, processes, and so on—needed for a working form, report,
calendar, or chart. You were able to alter the created objects to quickly customize the generated form or
report to suit your needs. Still, you haven'’t strayed far from what APEX builds for you.

As your application becomes more complex, there will be places where you wish to add code to enforce
business rules or to perform more complex processing logic than a simple insert, update, or delete. To do
so, you can use the various programmatic elements of APEX. The next chapter will address the topics of
validations, computations, and processes.

229

CHAPTER 8

Programmatic Elements

This chapter will cover the programmatic elements that can provide both simple and complex features to
the APEX framework. APEX provides simple declarative features with wizards to guide you. Because of its
integration with the database, APEX can also use the full power of the PL/SQL engine inside the Oracle
database. As of the implementation of APEX 4, even JavaScript interactivity has been made declarative and
extendable in the framework.

Conditions

Throughout the building of the Help Desk application, there will be times when you want to take advantage
of the conditional logic available with APEX components. Rather than try to understand every type of
condition (there are around 60 in the list of condition types), you should focus mainly on grasping the
concept of a condition in general.

The condition feature provides a place where logic can turn on or off a particular piece of APEX
technology. Before action is taken to display or execute a particular APEX component, the condition applied
to that component is evaluated for a TRUE, or positive, result.

The logic options available to develop a condition are very broad. The condition type defines the
particular mechanics used to evaluate the condition, using parameters as appropriate. Simple page-item
comparisons are the easiest to explain. For example, a process may only need to be run if a particular page
item has a value. In the case of sending an email, an attempt to send a message should be made only if an
email address is given. From that simple start, conditions can become as complex as you need them to be.
In advanced cases, conditions can also include browser and web server options.

Take time to review the condition types that are available and become familiar with their usage. It isn’t
as important to understand the technical implementation or syntax of each item as much as what options
make up a single condition. This familiarity will be helpful when you start defining APEX components and
understanding considerations for a flexible and modular application design.

Required Values

Requiring a value is a common need, and APEX 5.0 supports required values through what is essentially
aNOT NULL flag at the page-item level. You don’t need to create a full-blown validation (discussed next) to
make an item required. You must simply make a choice from a toggle item.

231

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

Continuing with the Help Desk application, let’s implement a Value Required validation on the
Description field:

1. Edit Page 210 of the application.
2. Edit the P210_DESCR page item.

3. Inthe Validation attribute group, change Value Required to Yes, as shown in
Figure 8-1. (Depending on how you set up your UI Defaults, Value Required may
already be set to Yes.)

¥ Validation
r
Value I Yes No
Required
Maximum 4000 characters
Length

Figure 8-1. Requiring a value to be present

4. Save your changes.

To test the new validation, start by creating a ticket. Before you enter any values, click the Create button.
Figure 8-2 shows the expected results with both a consolidated page-validation message box and item-
validation messages.

232

CHAPTER 8 " PROGRAMMATIC ELEMENTS

Tickets /

Manage Tickets

2 errors have occurred

* Subject must have some value. (Go to error)]

» Desc on must have some value. (Go to error)

Manage Tickets

Subject 4
Subject must have some value.

Description
Description must have some value

Assigned To -SelectaTech- ¢ Created On y 28-SEP-2015 Created By - Select a User -
Closed On
Status Id : Public Flag i ON Y
* Help

Figure 8-2. Validation showing required values for two elements both inline and consolidated at the
page level

In the application, the Subject element was already set up with a value requiring validation. This was
done because, when you created the form using the wizard, APEX took into account the NOT NULL property
of the column at the table level. You also see that the APEX wizard chose an item label template that includes
an asterisk (*) at the beginning of the label text. This gives the end user the visual clue that the column is
required. Be careful, however, that you don’t mistake choosing a label that indicates that the field is required
for actually making the field required using either the VALUE_REQUIRED attribute or a validation.

The error messages for multiple validations are cumulative. You see all validation messages when a
page is processed. See Figure 8-2.

Note The message text shown is a default and can be replaced by application-specific text as a feature
of globalization in the Shared Components area. There is only a single default for the entire application per
language. When you need custom messages in a single-language application, | recommend using standard
validation types that allow a different message for each validation you create.

233

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

Validations

The purpose of validations is to assist in providing data quality and to ensure the integrity of data entered
by the user. Mechanically, validations are tests that evaluate to TRUE or FALSE. Validations are evaluated
when a page is processed or submitted. All of the validations are evaluated; a FALSE return from any one
of them prevents additional page processes from executing and, ideally, results in feedback to the user.
Validations can also be executed on the client side using JavaScript. Although the interactive nature of
JavaScript can be very attractive in the user interface, it can also be circumvented easily. Any validations
that are executed in JavaScript should also be supported with appropriate validations during page
processing or at the database level.

Note It's a good practice to assume that every transaction is malicious. It’s possible to implement
validations strictly for security purposes, but sometimes it’s difficult to step away from a process enough to
identify where weak points may exist. For example, in a shopping-cart application, what would happen to
the total if someone ordered -1 of a product? Would they automatically get a credit? Take extra time in the
development process to look at your application so as to identify where security weaknesses may exist and to
implement features that make it generally more robust and secure.

There are four types of validations: item level, page level, and, for tabular forms, column level and
row level. Item-level validations operate against a single APEX item. Page-level validations are used when
multiple items are involved in validating the condition. Tabular form validations behave similarly but
are done against the columns and rows of the tabular form. You use an example of each in the Help Desk
application.

Item-Level Validation

Validations on a single element can have attributes specific to that element, and behavior can be customized
as required by that element. The example you will implement here is a validation that checks its condition
only when a specific criterion is true. The requirement is to have an end date entered whenever the status is
closed. Follow these steps:

1. Edit Page 210 of the application.
2. Navigate to the Processing tab of the Tree Pane.

3. Rightclick on the Validating node of the Processing tree and select Create
Validation, as shown in Figure 8-3.

234

CHAPTER 8

Computations

i P220_TICKET _DETAILS_ID

Procest Create Branch

Pro
gea:te Validation

Expand All Below
After Pr
Bra
Go To Page 200
AJAX Callback

Collapse All Below

Figure 8-3. Preparing to create a validation for the page

4. Inthe Attributes pane, set the Name to Check CLOSED ON date.

PROGRAMMATIC ELEMENTS

5. Inthe Validation attribute group, select Item is NOT NULL for the Type and then

select P210_CLOSED_ON for Item.

6. Enter Please enter a value for #LABEL#. into the Error Message text area,
and set the Associated Item as P210_CLOSED_ON, as shown in Figure 8-4.
The error message shown uses a substitution variable #LABEL# to include the
label of the item in the message. This way, when the label on the form item
changes in the future, the validation error message will automatically reference

the new label.

235

CHAPTER 8 " PROGRAMMATIC ELEMENTS

Validation
=|=E| = = GV
¥ |dentification
r
Name Check CLOSED_ON date
¥ Execution Options
r
Sequence 10
¥ Validation
Tabular Form - Select - 2
Type Item is NOT NULL S| |i=
Item P210_CLOSED_ON ~
Always Yes | No
Execute
¥ Error
r
Error Message 2l

Please enter a value for SLABELY.

Display Inline with Field and in Notificatio O
Location

Associated |P210.CREATEDON | >
Item

Figure 8-4. Setting the validation properties

In this step, we’ll make the validation apply only when the current status of the ticket is CLOSED:

7. Inthe Condition attribute group, set Type to PL/SQL Function Body, as shown
in Figure 8-5.

236

CHAPTER 8 " PROGRAMMATIC ELEMENTS

¥ Condition

When Button - Select - <%
Pressed

Type PL/SQL FunctionBody 3=

r

PL/SQL Function Body

Y

|1F :P210_STATUS_ID = get_status('CLOSED') THEN
RETURN TRUE;

ELSE
RETURN FALSE;|

END IF;

Figure 8-5. Setting the Condition Type and Function body for the validation

8. Enter the following code into PL/SQL Function body:

IF :P210 STATUS ID = get status('CLOSED') THEN
RETURN TRUE;

ELSE
RETURN FALSE;

END IF;

9. Save your changes.

Once the validation has been created, it appears in both the Rendering and Processing tabs on the
APEX Page Designer, as shown in Figure 8-6. Both references point to the same implementation and are
shown for easy navigation.

[P210_CREATED_ON L3 Go To Page 210
P210_CREATED_BY Computations
fi] P210 CLOSED ON il P220_TICKET_DETAILS_ID
Validations Validating

() Check CLOSED_ON date Validations
=] P210_STATUS_ID (@) Check CLOSED_ON date

< P210_TICKET_ID_NEXT Processing

< P210_TICKET_ID_PREV Processes

— P210_TICKET_ID_COUNT Process Row of TICKETS
Region Buttons ") reset page

Figure 8-6. Validations created appear in two places on the Application Builder page

This validation now requires that a value be entered for the Closed On item when the ticket status is set
to CLOSED. The condition applied to the validation is evaluated every time the page is submitted.

237

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

Page-Level Validation

Page-level validations apply to one or more items simultaneously and often can be an entire PL/SQL block
of code that must evaluate to TRUE in order for the validation to be successful. The requirement for the Help
Desk application is to compare the Created On date with the Closed On date to ensure that they occur in
chronological order. A ticket that is closed before it’s created doesn’t make any sense. This is a good example
of using a validation to ensure data quality. Here’s how to create the validation you need:

1. Edit Page 210 of the application.
2. Navigate to the Processing tab of the Tree Pane.

3. Right click on the Validating node of the Processing tree and select Create
Validation.

4. Inthe Attributes pane, set the Name to Closed Date must be after Creation
Date.

5. Enter Closed On Date must be Later than the Created Date for Error
Message, set the Type to PL/SQL Function Body (returning Boolean), and
then enter the following code into the PL/SQL Expression text area. Figure 8-7
shows the completed values. Click Next to continue:

IF TO DATE(:P210_CREATED ON, 'DD-MON-YYYY') >
TO_DATE(:P210_CLOSED_ON, 'DD-MON-YYYY")
THEN
RETURN FALSE;
ELSE
RETURN TRUE;
END IF;

238

CHAPTER 8 " PROGRAMMATIC ELEMENTS

Validation
=|=| == GV
¥ Identification
r
Name Closed Date must be after Creation Dz
¥ Execution Options
r
Sequence 20
¥ Validation
Tabular Form - Select - £
r
Type PL/SQL Function Body r T iZ
r
PL/SQL Function Body Returning Boolean Al
IF TO_DATE(:P21@_CREATED_ON, 'DD-MON-YYYY') >
TO_DATE(:P210_CLOSED_ON, 'DD-MON-YYYY")
THEN
RETURN FALSE;
ELSE
RETURN TRUE;
END IF;
¥ > -
Always Yes | No
Execute
¥ Error
r
Error Message Al

Closed On Date must be Later than the Created
Date

Figure 8-7. Validation attributes

6. Save your changes.

In your application, you now have a feature that helps ensure the quality of the data being entered. This
type of data check makes sure any metric that calculates time from start to end doesn’t produce a negative
answer due to dates. This improves the quality of the data and the reliability of the metrics that are produced
in reports.

239

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

Tabular Form Validation

Tabular forms in APEX 5.0 are able to perform validations better than they did in previous versions. The
wizard that creates a tabular form also adds validations for you. The wizard creates validations automatically
based on the data model. However, a wizard can only know so much about your business process, and the
data model may have more flexibility than you want in your application.

Looking at the definition of page 230, the wizard has created a number of Not Null validations for you,
based on the NOT NULL attributes in the underlying TICKETS table. However, the wizard can’t know that you
require a Closed On date when a ticket is closed. You can apply that validation using a column-level tabular
form validation:

1. Edit Page 230 of the application.

Navigate to the Rendering tab in the Tree Pane.

Expand the Columns node of the Manage Multiple Tickets tabular from.

Right click on CLOSED_ON and select Create Validation from the context menu.

In the Attributes pane, set Name to CLOSED_ON is Not Null if Ticket is CLOSED.

@ o ~ w N

Set the Tabular Form to Manage Multiple Tickets, the Type to Column is NOT
NULL, and the Column to CLOSED_ON, as shown in Figure 8-8.

Validation

=== | = (7

¥ Identification
[Name CLOSED_ON is Not Null if Ticket is CLOSED

¥ Execution Options
f Sequence 100

¥ Validation

Tabular Form Manage Multiple Tickets % >
[Type Column is NOT NULL S|
C R e —
f Always Yes No

Execute

Figure 8-8. Setting Validation Name and Validation attributes

240

CHAPTER 8 " PROGRAMMATIC ELEMENTS

7. For Error Message, enter #COLUMN_HEADER# must be entered if Status is CLOSED,
as shown in Figure 8-9. Click Next.

¥ Error

r

Error Message aJ

#COLUMN_HEADER# must be entered if Status is CLOSED

Display Inline with Field and in Notification %
Location
Associated CLOSED_ON %
Column

Figure 8-9. An error message using substitution variables

8. Inthe Condition attribute group, set Type to PL/SQL Function Body and
the Execution Scope to For Created and Modified Rows, and then type the
following code into the PL/SQL Function Body text area:

IF :STATUS ID = get status('CLOSED') THEN
RETURN TRUE;

ELSE
RETURN FALSE;

END IF;

9. Save your changes.

When you run the Manage Multiple Tickets page, you can test the new validation either by adding a new
ticket with a status of CLOSED and no Closed On date set, or by removing the Closed On date of an existing
closed ticket and attempting to save the changes. In Figure 8-10, each row that doesn’t meet the validation
requirement is highlighted and appears in a list of errors at the top of the page. In this example, the rows that
didn’t have a Closed On date failed the validation and are flagged as needing attention.

241

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

2 errors have occurred

Manage Multiple Tickets

Subject Description Created By Created On Closed On Assigned To Status

Cannot log into E-Mail User called and
cannot log into his
MS Cutiook e-mall
Account

Paul : os-Mmav-2015 [o5-Mmav-2015 & Scott : OPEN

PC will not tum on The user's PC will
not turn on when . " (=] 2, $
. s oeMava0rs (S = | E B 1
s Rngo 8 | [E)] -selectatecn CLOSED
pressed.

Need more memory User needs more

memary installed George ‘ oa-mav201s [E | [E] oo ; CLOSED

Figure 8-10. Results that fail validation are highlighted and presented in the message area

Note By default, these validations are only executed for new or changed rows. You can change this
behavior by setting the Execution Scope of the validation, located in the Conditions section.

The Create Validation wizard also allows the creation of row-level validations on tabular forms.
These validations are run once for each row being processed by the tabular form. At this level, you could
easily create a validation, similar to the one created for page 210, that checked to see if the Closed On date
occurred after the Created On date.

As an exercise to see how much you've learned, try to implement that validation at the row level of the
tabular form on page 230.

Computations

An APEX computation is analogous to a PL/SQL function. The intent is to act on an item in the application
by setting the value using a variety of methods. This allows information to be derived rather than just stored
in the data tables. Computations can be implemented when a page is rendered or after a page is submitted
back to the server, depending on the needs of the application. Computations can act on any item available
within an application. Items that can be set include items on the current page, items on another page, and
even application-level items.

There is also a type of computation that can be used at the application level. It’s available in an
application’s shared components. This type of computation has additional options for execution points,
including a computation point called On New Instance that executes when a new session (or instance) is
given to a user when they log in.

Execution

It's important to understand when a computation is executed relative to when a value is shown on a page and
to when other values are available to the computation. When using the value of an item in a computation, the
current session state for that item is the value that is used. A computation sets an item value in session state,

242

CHAPTER 8 " PROGRAMMATIC ELEMENTS

and any processing (computations, validations, or processes) that uses that item after it has been set sees the
results of that computation. When a page is rendered, it shows what is in the session state for that item at the
time it's shown on the page. The computation point is the setting that determines when the computation is
executed.

On the page definition screen, several computation points are shown in the page tree. You can adjust
the computation point by clicking and dragging the computation in the tree to a different computation point,
or by editing the computation and changing the values for the sequence and computation point directly. The
sequence only orders the computations within a given computation point. In general, the page renders and
processes as shown on the page definition screen, starting at the top and going down the list to the bottom.
There are only minor exceptions, such as dynamic actions and AJAX callbacks, which have variable points of
execution.

Types
Computations have much of the same flexibility as other APEX components do. They can be complex or

simple, with the full capabilities of the Oracle database to support them. The types of computations are as
follows:

e Static Value: Simple static text value
e [tem: Name of another item in the application

e SQL Query (Return Single Value): Any SQL statement as long as it returns a single row
and a single column

e SQL Query (Return Colon-Separated Values): SQL used for multi-select items
e SQL Expression: Expression used in the SELECT portion of an SQL statement
e PL/SQL Expression: Same as SQL Expression

e PL/SQL Function Body: PL/SQL function syntax with a RETURN statement

e Preference: The value of an APEX user preference as stored in the metadata

Computations can be conditional in the same manner as many of the other APEX components are.
The conditions can be as complex as the business rules require, with the ability to use the database features
and APEX session items to evaluate the condition. Conditions evaluating to TRUE result in the computation
being executed.

Creating a Computation

The Help Desk application has a requirement to display the number of days a ticket has been open. The
result should be a derived value that changes depending on the day and status of the record being reviewed.
You can accomplish this by putting a new item on the page that displays the result of the computation:

1. Edit Page 210.

2. From the Items section of the Components Gallery, click and drag the Display
Only item so that it appears just to the right of P210_SUBJECT. See Figure 8-11.

243

CHAPTER 8 " PROGRAMMATIC ELEMENTS

CONTENT BODY

COoPY EDIT PREVIOUS NEXT
ITEMS

P210_SUBJECT ‘ S
. Display On

P210_DESCR

P210_ASSIGNED_TO = P210_CREATED_ON I~] P210_CREATED_BY

[=:] P210_CLOSED_ON

Figure 8-11. Placing the Display Only item

3. Inthe Attributes pane enter P210_DAYS_OPEN for Name and Days Open for the
Label. Set Save Session State to No.

Now there’s a new item in the region that you use as a container for the calculation. Next, we create the
calculation so that the value is set to the number of days the ticket has been open. However, we only want
this to appear for tickets that have already been created and not for new tickets being entered.

4. Inthe Conditions attribute group, set Type to Item Is NOT NULL.

5. When the region refreshes, set the value of Item to P210_TICKET _ID, as shown
in Figure 8-12.

¥ Condition

Type Item is NOT NULL & | i=
r

Item P210_TICKET_ID ~

Figure 8-12. Showing an item only when another item contains a value

6. Inthe Source attribute group, set the Type to Null.

7. Inthe Rendering tab of the Tree Pane, right-click P210_DAYS OPEN, and from
the context menu, select Create Computation, as shown in Figure 8-13.

244

CHAPTER 8 " PROGRAMMATIC ELEMENTS

! | P210_DESCR
| P210_ASSIGN
f::] P210_CREATE Create Button
1 P210. CHEATI
fi] P210_CLOSEI %

Create Validation

Create Page Item

[~] P210_STATUS
7 P210_TICKET Create Dynamic Action

Figure 8-13. Using the right-click shortcut to create a computation

8. Inthe Attributes pane, set Type to SQL Query (Return Single Value).

9. Inthe SQL Query text area, enter the following SQL statement (also shown in
Figure 8-14), and then Save your changes:

SELECT
DECODE(status, 'CLOSED', closed, open_or pending) days_open
FROM
(
SELECT
ROUND(sysdate - t.created on) open_or pending,
NVL(ROUND(t.closed on - t.created on),0) closed,
sl.status status
FROM
tickets t,
status_lookup sl
WHERE
t.status_id = sl.status_id
and t.ticket id = :P210 TICKET ID)

245

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

¥ Computation

r

Type SQL Query (return single value) < 1=

r

SQL Query)

SELECT
DECODE(status, 'CLOSED', closed, open_or_pending)
days_open
FROM
(
SELECT
ROUND(sysdate - t.created_on) open_or_pending,
NVL(ROUND(t.closed_on - t.created_on),e) closed,
sl.status status

FROM
tickets t,
status_lookup sl
WHERE

t.status_id = sl.status_id
and t.ticket_id = :P21@_TICKET_ID)

Figure 8-14. Entering the SQL statement for a computation

To see the results of adding the new item, run the application and navigate to the Tickets report (page
200). Click one of the Edit icons to bring up the single-record view (page 210). You should now see the result
of the computation as a number of days. When starting the process of creating a new ticket, the field isn’t
displayed, as the condition prevents the field from showing.

Processes

If computations are analogous to database functions, then processes are analogous to database procedures.
A process is a container for a unit of logic.

Processes are arguably the most complex part of APEX, because they're the construct used to deal
with data processing in the database as well as with references to APIs, such as those used to send email
and perform any other business logic required in the application. When dealing with data forms, the APEX
wizard creates built-in processes that manage the reading and writing of data from the form. Those types of
built-in processes are called data-manipulation processes.

Processes, similar to computations, can occur during both page rendering and page processing.
Processes support the APEX conditions feature, which allows processes to be written as individual logic
units, with conditions determining whether the logic is needed.

246

CHAPTER 8 " PROGRAMMATIC ELEMENTS

Execution Points

Process execution points are the same as execution points for computations. The most commonly used
execution points for processes are On Submit - After Computations and Validations and On Demand - Run
This Process When Requested by AJAX, because these points support button-press activities and dynamic
actions. The full list is as follows:

New Session
Before Header
After Header
Before Regions
After Regions
Before Footer
After Footer
After Submit
Processing

AJAX Callback

Processes can be defined at the individual page level or at the application level as part of the shared
components. Functionally, page processes and application processes behave the same way. The difference
is found in where business logic is contained. For processes that need to run on all pages, you can define
an application process. Also, just as with regions, you can use Global Pages to define processes that run on
every page, but only for page rendering.

Process Types

Each different process type has a different use depending on the requirements. The types and their uses are

as follows:

Automatic Row Fetch: Retrieves records from a single database table or view

Automatic Row Processing (DML): Process to insert, update, or delete a record from a
single database table or view

Clear Session State: Clears session state values; also referred to as cache
Close Dialog: Process to close the current modal or non-modal dialog

Form Pagination: Process to retrieve the previous or next record from a database
table or view. Most often used in master-detail forms

Load Uploaded Data: Process to load the parsed spreadsheet data into an existing
table or view

Parse Uploaded Data: Process to parse the prepared spreadsheet data in preparation
for loading into an existing table

PL/SQL Code: Generally use for utilizing database PL/SQL logic

Prepare Uploaded Data: Process to prepare spreadsheet data for uploading into an
existing table

247

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

e Reset Pagination: Resets pagination for a report
e Send Email: Declarative interface to easily send email
e Tabular Form - Add Rows: Process to add a row into a tabular form region.

e Tabular Form - Multi-Row Delete: Process to delete multiple rows from a tabular
form region

e Tabular Form - Multi-Row Update: Process to update multiple rows from a tabular
form region

e User Preference: Process to set user preferences for the end user.
e Web Services: Submits a request to a web-service provider

e Plug-ins: Processes functionality provided by plug-ins

Processes in the Help Desk Application

The details behind processes can be very complex. In order to provide an adequate example, let’s include a
simple process in the Help Desk application: a requirement that the application keep track of the last time
a record was modified. You can do this by updating a Last Updated date on the record every time it’s saved.
There’s more than one way to accomplish this task. Here, you will do it with a process.

First, you need to add the LAST_UPDATED field to the TICKETS table. To do this you use the SQL Workshop
again:

1. From the SQL Workshop drop-down menu, choose Object Browser, as shown
in Figure 8-15.

SQL Workshop ° Team
iy

SQL Commands

SQL Scripts

Utilities >

RESTful Services

Figure 8-15. Navigating to the SQL Workshop Object Browser

2. Select the TICKETS table from the list of objects at left.

3. Click the Add Column button above the table definition, as shown in Figure 8-16.

248

Table Data Indexes Model Constraints Grants

Ul Defaults

CHAPTER 8 " PROGRAMMATIC ELEMENTS

Dependencies SaL

Add Column Modify Column Rename Column Drop Column Rename Copy Truncate Create Lookup Table
Column Name Data Type Default Primary Key

TICKET_ID NUMBER No - 1
SUBJECT VARCHAR2(255) No -

DESCR VARCHAR2(4000) Yes =

CREATED_BY VARCHAR2(50) Yes

CREATED_ON DATE No

CLOSED_ON DATE Yes -

ASSIGNED_TO VARCHAR2(50) Yes -

STATUS_ID NUMBER Yes -

Downiload | Print

Figure 8-16. Adding a column to the table

4. Enter LAST_UPDATED for Add Column and DATE for Type, and click Next.
5. Click Finish.

Now you can add the process to the page:
6. Edit Page 210 of the application.

7. Inthe Processing tab of the Tree Pane, right-click the Processes node and choose
Create from the context menu, as shown in Figure 8-17.

Processing

FToCH

B
| reset
After Procest Expand All Below

Branches Collapse All Below
> GO Te e

AJAX Callback
Figure 8-17. Using the context menu to create a process

8. Setthe Name of the process to Set Last Processed and set Point to Processing.
Set the Type to PL/SQL Code.

249

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

In the next step, you will set the contents of your anonymous PL/SQL block. If you're unfamiliar with a
PL/SQL anonymous block, it's PL/SQL code that has a BEGIN and an END that wrap the contents. You need
to follow PL/SQL syntax conventions, including ending statements with semicolons. It’s possible to nest
anonymous blocks of code, but that isn’t necessary for this example:

9. Enter the following SQL into the PL/SQL Code text area (see Figure 8-18):

BEGIN
UPDATE tickets SET last_updated = sysdate
WHERE ticket id = :P210 TICKET ID;
END;

¥ Source

PL/SQL Code 2)

BEGIN
UPDATE tickets SET last_updated =

WHERE ticket_id = :P21@_TICKET_ID;
END;

[

Figure 8-18. Entering the anonymous PL/SQL block

10. Leave both the Success and Error messages empty. These messages will appear
at the top of a page as feedback to the user after the process completes. Your
requirements don’t call for you to notify the user that the Last Updated date was
changed.

11. Inthe Condition attribute group, change When Button Pressed to SAVE.

12. Save your changes.

At this point, the process has been created. Currently, you don’t show the Last Updated date in the
summary report. In order to see the value on the report, you will need to add the LAST_UPDATED column to
the query from which the report draws data. That report resides on page 200 of your application:

1. Edit Page 200.
2. Edit the Tickets region by clicking the region’s name in the tree.

3. Add the LAST_UPDATED date to the Region Source of the report, as in the
following SQL. Click Save when you're finished:

select TICKET_ID,
SUBJECT,
DESCR,
CREATED_BY,
CREATED ON,
CLOSED_ON,
ASSIGNED_TO,
STATUS,

250

CHAPTER 8 " PROGRAMMATIC ELEMENTS

LAST_UPDATED
from TICKETS,
STATUS_LOOKUP
where TICKETS.STATUS_ID = STATUS_LOOKUP.STATUS_ID
and UPPER(SUBJECT) LIKE '%'||UPPER(:P200_SEARCH)||'%"
and tickets.status_id LIKE :P200_STATUS_ID

To test and review the change, run the application and navigate to the Tickets report. Edit any ticket,
and click the Apply Changes button. You should now see a value for Last Updated indicating the current day.

This is a quick example of how you can use a process to apply form-based logic. When the form is used
to make changes, a brief piece of PL/SQL makes a record change automatically. Packages, procedures, and
APIs all can be reached using processes similar to this one.

PL/SQL Regions

The PL/SQL region type is effectively an open container for PL/SQL with the additional option to generate
output. You can use Oracle Web Application (OWA) Toolkit procedures such as htp.p to generate the output.
References to APEX items can be made using bind variable syntax (for example, :P1_ITEM_NAME), the v
function (for example, v('P1_ITEM_NAME')), or substitution string syntax (for example, 8P1_ITEM_NAME.) to
support the logic contained in the region.

PL/SQL regions differ from process regions in that PL/SQL regions are executed only during page
rendering, whereas processes can run during both page processing and page rendering. PL/SQL regions
have the advantage of being able to generate content directly on the page. A use case for this type of output is
the need for a complex report format that is beyond the ability of a standard report template. In that case, a
PL/SQL package that generates the needed HTML output can be written and called by a PL/SQL region.

In the Help Desk application, you want to make the home page a bit more useful by adding a quick
summary of the number of tickets an individual has open. This is applicable only if someone is logged in.

So if they aren’t logged in, a simple greeting message will suffice. You can accomplish the task of adding the
summary by adding a PL/SQL region with some logic to output the appropriate message:

1. EditPagel.

2. Edit the APEX Issue Tracker region by clicking its name in the tree.

Currently, this region is a standard Static Content region, emitting exactly the HTML code you enter into
it. You want to make it dynamic, so switch it so it uses PL/SQL:

3. Inthe Identification attribute group, change Type to PL/SQL Dynamic Content.

4. Enter the following code for the PL/SQL Code text area, replacing the static
HTML that was there, and then Save your changes:

DECLARE
1 count NUMBER;
1 status_id NUMBER := get status('OPEN');
BEGIN
IF :APP_USER != 'nobody' THEN
SELECT count(*)
INTO 1_count
FROM tickets
WHERE assigned_to = :APP_USER
AND status_id = 1 _status_id;

251

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

htp.p('<h1>Welcome to the APEX Issue Tracking System,
|| :APP_USER || '</h1>'
|| 'You have ' || 1 count || ' Open tickets.
'
|| 'Select an option from the list');

ELSE
htp.p('<h1>Welcome to the APEX Issue Tracking System</h1>'
|| 'Select an option from the list');
END IF;

END;
This code implements logic that makes a decision based on the user-substitution variable : APP_USER
and tailors the htp.p output according to that distinguishing factor. APEX provides “nobody” as a user name
when a user isn’t yet logged in, so the logic keys off of that value.
When the PL/SQL region is generated for a user who isn’t yet logged in, a simple welcome message
is produced (see Figure 8-19). When a user who has credentials is logged in to the application, a message

similar to that in Figure 8-20 is produced that shows a user-specific greeting and a quick count of the number
of open tickets assigned to that user.

APEX Issue Tracker

Welcome to the APEX Issue Tracking System

Select an option from the list

Figure 8-19. Issue Tracker PL/SQL region when the user isn’t yet logged in

APEX Issue Tracker

Welcome to the APEX Issue Tracking System, APRESS

You have 0 Open tickets.
Select an option from the list

Figure 8-20. With an authenticated user, the PL/SQL region generates a greeting and a ticket count

In this section, you've created a dynamic PL/SQL region that alters the output based on the application
user. This section’s example, although simple, shows how the content of a region can be as dynamic as
necessary with the use of the PL/SQL in the database.

252

CHAPTER 8 " PROGRAMMATIC ELEMENTS

Dynamic SQL

Dynamic SQL is a term for SQL that isn’t finalized at design time, but rather is assembled at runtime by
any number of dynamic criteria. Dynamic SQL is used when the exact requirements of an SQL statement
aren’t known until runtime, or when the SQL needs to change while the application is running. Dynamic
SQL lets you modify column lists, where clauses, joins, and any other portion of an SQL statement while an
application is running.

APEX supports dynamic SQL in reports and can support PL/SQL functions returning SQL statements as
aresult. There are some constraints, however. Functions must return a valid SQL statement. Depending on
the implementation, a statement may need to return a set of generic columns if the number of columns isn’t
known or will vary.

The Help Desk application has the requirement to differentiate public tickets from private ones. To
accomplish that goal, you can implement a public flag feature. Implementing the flag requires a quick
update to your data model and then an implementation of dynamic SQL on the Home Page report. Start by
making the data modification:

1. Navigate to the SQL Workshop.

2. Click the SQL Commands icon.

3. Enter the following SQL statement in the text area, and click the Run button.
This adds the new column called PUBLIC_FLAG to the TICKETS table:
ALTER TABLE tickets ADD (public_flag VARCHAR2(1))

4. Enter the following SQL statement in the text area, replacing the current
statement, and click Run. Ensure that the Autocommit checkbox is checked.
This updates all the current tickets to a default value of N:

UPDATE tickets SET public flag = 'N'
Now that the data-model modifications are complete, you can move on to the application. Add the
option to see and edit the new value in the ticket edit screen:
5. Edit Page 210 of the Help Desk application.

6. Addanew Radio Group item to the Manage Tickets region using Drag & Drop
from the Component Gallery. Position the new item to the right of the Status ID
item.

7. Enter P210_PUBLIC_FLAG for Name and Public Flag for the Label.

8. Inthe Settings attribute group set Number of Columns to 2.
9. Inthe Appearance attribute group set Template to Required.
10. Set Value Required field to Yes.

11. Inthe List of Values attribute group, set Type to Static Values, while in the
Static Values text area enter STATIC:Y,N

12. Set Display Null Value to No, as shown in Figure 8-21.

253

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

¥ Validation

Value Yes No
Required

¥ List of Values
r

Type Static Values
r

Static Values 5]

STATIC:Y,N

Display Extra Yes No
Values

Display Null Yes No
Value

Figure 8-21. The LOV for the public flag

When you add a column to a form that relates to a database column in the table on which the form
operates, a few settings have to be changed. Source Used and Source Type work together to identify how
each item gets its value:

13. Inthe Source attribute group, set Type to Database Column, which in turn sets
Source Used to Always, replacing any existing value in session state. Ensure
that Database Column Name is PUBLIC_FLAG.

14. In the Default attribute group, set the Type to Static Value and enter N for
Static Value.

15. Save your changes.

Now that you have a PUBLIC_FLAG column in your data model and the ability to control it through the
Tickets form, you can create the dynamic SQL report on page 1 to display tickets with a Public option for
unauthenticated users:

1. Edit Page 1 in your application.

2. Create a new region by clicking the Create button in the Page Designer toolbar
and selecting Report Region, as indicated in Figure 8-22.

254

CHAPTER 8 " PROGRAMMATIC ELEMENTS

By 1le u o [F]avm xo a | = |ICH

Page Search Page Page

Page as Cop — == = ==

g y =|= = | = B
Form Region y

R Declaration
Page Component
var

Shared Component htmldb_delete_message= "' "DELETE_CONFIRM_MSG
Page Group y
Developer Comment Execute when Page Loads a2

Team Development >

Figure 8-22. Creating a region for the SQL to generate your report

3. Select Classic Report, and click Next.

4. Enter Current Open Issues for Title, as shown in Figure 8-23. Click Next.

Create Region X
@

Display Attributes

Region Type Report

" Tite Current Open Issues

<>

Region Template Standard

{2

Parent Region - Select a Parent -
Display Point Page Template Body v~
[Body][Pos.1][Pos.2][Pos.3][Pos.4][Pos.5]

Sequence 20

< Cancel Next >

Figure 8-23. Region title and display point

255

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

Set the Source Type to SQL Query and enter the following SQL into
the Region Source. Click the Create Region button when you're finished to
accept the defaults for all of the remaining settings:

DECLARE
1 sql VARCHAR2(500);
BEGIN

1sql :=1sql || q"!
SELECT
subject,
created on,
assigned_to
FROM
tickets t,
status_lookup sl
WHERE
t.status_id = sl.status_id
AND sl.status = 'OPEN'
'
IF :APP_USER = 'nobody' THEN
1sql :=1sqgl || q'! AND public flag = 'Y' !';
END IF;

RETURN 1_sql;
END;

To see the results of this report fully, you need to set a few tickets with the new PUBLIC setting. Navigate

to the ticket summary screen as a logged-in user and change a few OPEN tickets to have the PUBLIC option
set to Yes. When you navigate to the home screen as a logged-in user, a full list of open tickets should appear,
as shown in Figure 8-24. After logging out, you will see only the tickets that have been identified as PUBLIC.

256

CHAPTER 8 " PROGRAMMATIC ELEMENTS

APEX Issue Tracker

Welcome to the APEX Issue Tracking System, APRESS

You have 0 Open tickets.
Select an option from the list

Current Open Issues

Subject Created On Assigned To

Accidentally deleted Q2.ppt 24-APR-2015 DAN

Smartphone will not sync with Outiook 22-APR-2015 DOUG

VPN Client Install Issues 20-APR-20156 DOUG
Mouse is not working 19-APR-2015 M
Speakers are too soft 18-APR-2015 SCOoTT
Disk is Full 16-APR-2015 DOUG
New Ticket 17-JUL-2015

I think | have a virus 27-APR-2015 DAN
BSO0D after rebooting 28-APR-2015 DOUG
Network drive not being mapped 30-APR-2015 TIM
Need to install SP2 01-MAY-2015 TIM
Need more memory 03-MAY-2015 DOUG
Cannot log into E-Mail 05-MAY-2015 SCOTT
Funny smeil coming from PC 25-APR-2015 TIM

1-14

Figure 8-24. Resulting report generated from dynamic SQL

Note The SQL statement uses a quoting syntax that you may not be familiar with. Oracle Database
10g introduced a quoting mechanism for string literals that allows you to define your own string delimiters,
removing the need to double up single quotes in strings. Any character can be used as a delimiter, including
bracket combinations () {} [] <>.The basic syntaxis q'X string X' where X is any single character. The
q' X opens the literal string, and the X" closes the literal string. You can find more details on the literal syntax in
the Oracle Database SQL Language Reference.

257

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

Summary

As with any programming language or framework, learning the basics is the first step. This chapter touched
on a lot of points that could be considered to be the tips of icebergs. Each section has the capability to reach
into a vast set of technologies, with the Oracle database being primary among them. The intention here is
to demonstrate how the APEX framework works through the example application and to provide a starting
point for additional detail discovery.

258

CHAPTER 9

Security

Security has varying degrees of implementation; there’s never a black-and-white answer. The question of
how much security is needed is followed up by additional questions regarding the value of what is being
protected and the risks, repercussions, and likelihood of it being sought after. For every security measure,
there will always be someone trying to circumvent it. This chapter will review basic security features and an
approach to securing the Help Desk application. The concepts reviewed here apply to all APEX applications
and are specific to the APEX framework.

User-Maintenance Navigation

In the Help Desk application, you have the requirement to allow users to be maintained in the application
through the web interface. Let’s add a section to the application that allows for the maintenance of user
accounts, and then let’s modify the tab structure so as to navigate to the newly created form. This time, you
won't use the Create Page wizard to create the menu items, but instead will create them from scratch in the
Shared Components section so that you may gain a better understanding of how the menu hierarchy works.
First, create a blank page that will be the landing page for your new tab (tabs require a page to reference):

1. From the Application Builder home page, while editing the Help Desk
application, click the Create Page button.

2. Select the option for Blank Page and click Next.

3. Set Page Number to 600, enter Users for the Name field, and set the
Breadcrumb selection to Breadcrumb. When the page refreshes, ensure that
Entry Name is Users and click Next.

4. Select Do not associate this page with a navigation menu entry for the
Navigation Preference radio group. Click Next.

5. Click Finish to complete the creation of the page. The completed page should
be empty, and you should not see any new menu item related to it, as shown in
Figure 9-1.

259

CHAPTER 9 * SECURITY

Users

release 1.0 Sot Scroen Reader Mode On

Figure 9-1. Viewing the newly created empty page with its single breadcrumb entry

Now that you have a Users page, you need to make a modification to the navigation. We’ll add an Admin
entry to the menu and create sub-entries for user maintenance. Here's the process to follow to add the new
menu items with the correct hierarchy:

1. Navigate to the Shared Components page.
2. Inthe Navigation section, click Navigation Menu.

3. The interactive report shows the available menus. Click on Desktop Navigation
Menu, as shown in Figure 9-2.

Lists List Details Unused Conditional Entries Utilization History Lists
Q -~ [Go 23| B | Actionsv Reset Copy A List is a template driven,
shared collection of links. Use
Lists 10 add navigation to your
- v; Navigation Menu application
) Entries List Navigath Navigation Recently Edited
Name Type Entries References Updated Updated Bar Menu
Desktop Navigation Menu
beskiop Static 7 0 2wethsago 2V No Yes
Naw.gan%hﬂ.ew ago

Figure 9-2. Clicking the Desktop Navigation Menu

Looking at the current menu structure, as shown in the report in Figure 9-3, you can see we already
have seven entries, and that two of the entries (Submit a Ticket and Contact Us) are sub-entries of the Home
menu entry. Next, we will add the Admin menu entry and then add the sub-entry for user maintenance.

260

Q~
Se{pe_nca
Name
10 Home
Submit a
2 Ticket

30 Contact Us

40 Tickets
50 Analysis
60 Calendar
70 Chart

Parent
Entry

Home

Go Actions

17p=8APP
DEBUG.:

17p=8APP

DEBUG.:2:::

17p=8APP

DEBUG.:3:::

17p=8APP
DEBUG.

1?p=8APP
DEBUG.

17p=8APP_

DEBUG.

1?p=8APP.
DEBUG.

D.

D.:

Target Conditional

1:8APP_SESSION.:&

:2:8SESSION.:&

.:3:4SESSION.:&

:200:8SESSION.::&

:300:ASESSION.::&

:400:8SESSION.::&

500:4SESSION.::&

Figure 9-3. Viewing the currently existing Navigation Menu entries

CHAPTER 9 * SECURITY

Authorization
Updated Level Scheme

4 weeks
ago

3 weeks
ago

3 weeks
ago

3 weeks
ago

2 weeks
ago

4. To add the Admin menu entry, click the Create List Entry button in the upper-
right corner, as indicated in Figure 9-4.

Lists List Details

Unused

List Desktop Navigation Menu O

Qv

Conditional Entries

Utilization History

Go Actions v

Reset Grid Edit Edit List Create List Entry

Figure 9-4. Creating a new menu entry using the Create List Entry button

5. Inthe Entry section, enter Admin for List Entry Label.

6. Inthe Target section, enter 600 for Page and click Create List Entry at the top of
the page. See Figure 9-5.

Copy

P P

@ @ PP D

o

261

CHAPTER 9 © SECURITY

Entry
List: Desktop Navigation Menu
Parent List Entry - No Parent List Item -
Sequence B0
Image/Class
Altributes
Alt Attribute
' List Entry Label Admin
Target
Targettype Page in this Application
" Page 600 ~

reset pagination for this page
Figure 9-5. Entering the attributes for the new Admin menu entry

1. To add the User Maintenance menu entry, click the Create List Entry button in
the upper-right corner.

2. Inthe Entry section, set the Parent List Entry to Admin and then enter
User Maintenance for List Entry Label.

3. Inthe Target section, enter 600 for Page.

4. Inthe Current List entry section, set List Entry Current for Pages Type to
Comma Delimited Page List.

5. Inthe List Entry Current for Condition, enter 600,610 and click the Create List
Entry button at the top of the page.

You now have a User Maintenance menu item as a sub-entry to your Admin menu item. When the user
clicks the parent menu item, they are taken to the page indicated when you created the menu entry, but a
tab may be active for other pages in the application, too. In this case, the User Maintenance menu item will
be current for both page 600 and 610. It’s OK that you haven’t created page 610 yet—you will shortly.

Running the application now will show the results seen in Figure 9-6. The page that is currently active
changes the highlight that is applied to the different tab elements.

262

CHAPTER 9 * SECURITY

Users

moisase 1.0 Sot Screon Regder Mode On

Figure 9-6. The new navigation menu showing the Admin entry and User Maintenance sub-entry

You now have a navigational framework that clearly distinguishes the items needed to administer the
application. This design is extensible. As the application grows with time, additional features requiring
administration could be added to this navigational structure.

User-Maintenance Data Entry

As part of the Help Desk design, you should be able to maintain the users from the application. To do this,
you need to implement some new database objects.

1. Upload and run the script ch9_security objects.sql. Refer to Chapter 4 if you
need step-by-step instructions. You should see 13 rows, all of which complete
successfully.

Let’s walk through briefly what this script does for you:

e Lines 1-16: Create a function called hash_password that encodes any string
passed to it.

e Lines 18-24: Create the USERS table that will hold the user records.

e Lines 26-27: Create the USER_SEQ sequence that will be used as the primary key
for the USERS table.

e Lines 29-37: Create a Before Insert trigger on the USERS table that automatically
assigns the next sequence as the primary key, converts the user name to
uppercase, and calls the hash_password function to encrypt the user’s password.

e Lines 39-50: Create a Before Update trigger that converts the user name to
uppercase and hashes the user’s password if it has changed.

e Lines 52-87: Create the authenticate_user function that validates whether the
passed user name and password are valid compared to what exists in the USERS
table.

e Lines 90-103: Create six entries in the USERS table, all with the password apress.

263

http://dx.doi.org/10.1007/978-1-4842-0466-5_4

CHAPTER 9 © SECURITY

Now that you have your new database objects, you can continue to implement the security model:

2. Edit Page 600 of the application.

3. Create a new region by clicking the Create button and selecting Form Region.

4. Select Form on Table with Report and click Next.

Because the report is actually quite small and contains very few columns, it’s probably overkill to create
it as an interactive report, so stick to the Classic report in this instance:

5. Set Implementation to Classic.

6. Enter Users for Region Title and set Region Template to Standard. The settings
look like those in Figure 9-7.

Create X
&

Report Page

The Report page is used to select the rows to be edited. It also includes a button to create a new row.
Implementation Classic
5 Page Number 600
; Region Title Users
Region Template Standard
Report Template template: 42, Standard

Pagination Size 15

Figure 9-7. Report page setup

7. Click Next.

8. Set Table/View Owner to your schema name and set the Table/View Name to
Users (table), as shown in Figure 9-8.

264

CHAPTER 9 * SECURITY

Create x
(] ®

Data Source

This wizard builds a two page Report and form combination on a single table or view. The first page enables users to

specify the row to be updated. The second page provides users with ability to update the selected table or view. Select
the schema owner who owns the database table or view.

" Table / View Owner APRESS 2

* Table/View Name USERS (table)

<>

Figure 9-8. Setting the owner and table names

9. Click Next.

10. Select USER_ID and USER_NAME as the columns to be displayed in the report.
Remove the PASSWORD column by shuttling it to the left, and then click Next.

11. Select any Edit link image and click Next.

12. Enter 610 for Page Number and Manage Users for Page Name and Region Title,
as shown in Figure 9-9. Click Next.

265

CHAPTER 9 * SECURITY

Create Form and Report
© © © ®

Form Page

Specify page and region information for the Form Page. The Form Page is used to insert, update, and delete rows from

the selected table.

* Page Number 610
* pageMode Normal S
*
Page Name Manage Users
) Region Title Manage Users

Region Template Standard v

< Cancel

Figure 9-9. Defining the name of the Manage Users form

13. Set Primary Key Type to Select Primary Key Column(s) and, when the page
refreshes, select USER_ID for Primary Key Column 1. Click Next.

14. Select Existing Trigger for Primary Key Source and click Next.

15. Select USER_NAME and PASSWORD as the columns to be editable on the form, as
shown in Figure 9-10, and click Next.

266

CHAPTER 9 * SECURITY

Create Form and Report X
@ © © o

Form Page
Select the columns to include in the form page.

* Select Column(s)) USER_NAME (Varchar2)
PASSWORD (Varchar2)

L
=

e
& €

< Cancel

Figure 9-10. Select USER_NAME and PASSWORD as fields to be seen in the form

16. Set Insert, Update, and Delete all to Yes and click Next.
17. Click Create.

At the completion of these steps, the Help Desk application has some additional objects. The region on
page 600 is the report of the current users. Also notice the new page that allows editing of the data values,
including all the processes to do the corresponding database transactions. However, you still need to do a
few things to page 610 in order for it to display the breadcrumbs properly:

18. Navigate to the Shared Components region for your application.
19. Inthe Navigation Section, click the Breadcrumbs link.
20. Click the Breadcrumb icon to view all of the breadcrumb entries.

Viewing the breadcrumb entries, we can see that, while there is an entry for page 600, there is no entry
for page 610. We'll need to add that manually:

21. Click the Create Breadcrumb Entry button in the upper-right part of the page.
22. Inthe Breadcrumb section, enter 610 for Page.

23. Inthe Entry section, select Users(Page 600) as the Parent Entry and then enter
Manage Users for the Short Name.

24. Inthe Target section, enter 610 for Page. These entries are shown in Figure 9-11.

267

CHAPTER 9 * SECURITY

Ereadcrumb

Breadcrumb Breaderumb

“Page 610 A
Entry
Sequence 10
Parent Entry Users (Page 600)
* Short Name Manage Users

Leong Mame

Target

Target s a Page in this Application
Page 810 ~
reset pagination for this page

Fequest
Figure 9-11. Entering the breadcrumb details for page 610

25. Atthe top of the page, click Create Breadcrumb Entry.

When you're finished, page 610 has a Shared Components breadcrumb entry just like page 600.
Running the application displays shows a breadcrumb entry for both the Users report page and the Manage
Users page, as shown in Figure 9-12.

Users /

Manage Users

Figure 9-12. Showing the breadcrumb entry for the Manage Users page

Finally, you need to change the item type of P610_PASSWORD to Password, so it accepts a user’s input
but displays asterisk (*) characters as the password is typed. This item type is designed not to retrieve data
when a record is edited, despite being bound to a database column. Also, the item type doesn’t save any
value in session state, meaning it doesn’t remember the value entered after the page processing is complete.
This is a security feature to prevent data identified as a password from being retrieved inappropriately. Here
are the steps:

26. Edit Page 610.
27. Edit the item P610_PASSWORD.

28. Inthe Properties Editor, set Type to Password, as shown in Figure 9-13.

268

CHAPTER 9 * SECURITY

Page Item

[
I[
.”‘
o]

¥ Identification

r

Name P&10_PASSWORD

r

Type ; Pésswo_rd: . £
Figure 9-13. Setting the P610_PASSWORD element to a password field

Although you want a password to be required when creating a new account, if the admin user doesn’t
enter a password while editing an existing user, you want the system to keep the current password. Because
of this, you need to set the Value Required attribute of the password field to NO and instead implement a
validation that only fires when you're creating a new user:

29. Inthe Validating section of P610_PASSWORD, set the Value Required attribute
to NO.

30. While editing Page 610, right-click P610 PASSWORD, and select Create
Validation.

31. Inthe Properties Editor, set Name to P610_PASSWORD Is Not Null.

32. Inthe Validation Section, select Item is Not Null as Type and set Item to
P610_PASSWORD.

33. EnterA password must be specified. for Error Message.
34. In the Condition section, set When Button Pressed to CREATE.
35. Save your changes.

This completes the navigation and UI part of the security scheme you're implementing. With the
navigation and maintenance in place, you can now implement the authentication scheme that will use the
information.

Authentication

The key to making a secure application is to understand whom the accessing user is. APEX refers to this as
authentication. Authentication answers the question, “Who are you?” The APEX tool provides a series of
predefined authentication mechanisms, including a built-in authentication framework and an extensible
custom framework. At design time, it’s easy to switch between authentication methods by setting the active
scheme. There can be only one active authentication scheme at a time for an application. The following are
the major types of authentication schemes:

e Application Express Accounts: Users are managed in the APEX workspace and are
maintained just like workspace developer accounts.

e LDAP Directory: The user is an existing LDAP-compliant server such as Active
Directory or Oracle Internet Directory.

269

CHAPTER 9 © SECURITY

e Oracle Application Server Single Sign On: Authentication can pass between APEX
and an existing Oracle SSO server. Logging into the SSO server once passes the same
credentials to all APEX applications.

e Database Accounts: Database user names and passwords determine authentication.
Don’t confuse this with data access in an APEX application.

e HTTP Header Variable: This approach supports the use of HTTP header variables to
identify a user and to create an Application Express user session.

e Custom: Logic is determined by the developer. An example of usage is for Internet-
facing applications where self-registration may be desired. Another example is when
more than one authentication source is used simultaneously, such as using two
LDAP servers.

e Open Door: Developer testing simulates logging in as different individuals. This isn’t
intended to be used as a public authentication scheme.

e No Authentication: This option is intended to allow all parts of the application to be
reachable without needing a user to log in.

Each application has its own set of authentication schemes managed as part of its Shared Components.
Authentication schemes can be copied between applications when needed. This ability to copy is especially
useful when a custom authentication scheme has been developed and is desired in more than one
application. The authentication schemes also utilize the APEX subscription framework to allow a master
copy to be applied to subscribers inside of a single workspace.

Custom Authentication Schemes

In the previous section, the script that was imported included definitions for tables, triggers, and functions.
You will use those elements as part of your custom authentication scheme. The key component of the
authentication scheme is a function that compares the given user name and password to the stored values
in the USERS table. If there is a match, then the user is authenticated. You should review the database objects
and PL/SQL function code from the SQL Workshop for more details on how this is implemented.

Note Although the USERS table contains a field named PASSWORD, it’s not the actual password value; it's an
encrypted hash of the password. Passwords should never be stored as plain text.

Here’s the process to follow to create a custom authentication scheme based on the database objects
just mentioned:

1. Navigate to the Shared Components of the application.

2. Inthe Security region, click Authentication Schemes as shown in Figure 9-14.

270

Security

CHAPTER 9

Security Attributes

Authorization Schemes

Session State Protection

Build Options

Figure 9-14. Navigating to the Authentication Schemes shared component

Settings

Enable Legacy Authentication Attributes No

Click the Create button at the upper right on the Authentication Schemes
screen.

Select Based on a pre-configured scheme from the gallery and click Next.

Enter Custom Authentication Scheme for Name, and then select Custom for
Scheme Type. The page refreshes and displays different entry options based on
the scheme type selected.

In the Settings section, enter authenticate_user for Authentication Function
Name, as shown in Figure 9-15. You don’t need to fill out any of the other items
in this section.

Sentry Function Name

Invalid Session Procedure Name

Authentication Function Name authenticate_user

Post Logout Procedure Name

L0

Figure 9-15. Setting the Authentication Function Name

7.

Click Create Authentication Scheme.

SECURITY

271

CHAPTER 9 © SECURITY

Note No parameters are used here, nor is a PL/SQL semicolon. This is part of the definition of how
APEX handles custom authentication functions. The authenticate_user function that was created earlier
conforms to the expected signature: a function returning a BOOLEAN value with two parameters: p_username
varchar2(255) and p_password varchar2(255).

By default, when you create a new authentication scheme, it’s automatically set to be the active scheme.
Now you must use the user names and passwords that exist in the USERS table to log in to your application.

Run the application, and if it shows that you're logged in, log out. You can sign on as any of the following
users: Scott, Doug, Martin, Karen, Patrick, or Tim; all passwords are apress in lowercase.

Conditional Security

Many aspects of APEX are conditional. One pair of conditions is particularly applicable to the authentication
status: User Is the Public User and User Is Authenticated. These conditions can help you limit objects in
APEX to be available either to public users (those who haven’t logged in) or to authenticated users
(those who have logged in).

By applying security rules to the Help Desk application, you can improve usability by restricting the
display of menu options that aren’t available to the public. This avoids confusion and improves the overall
user experience when accessing the application. Let’s walk through the creation of this condition:

1. Navigate to the Shared Components area of the application.
In the Navigation section click the Navigation Menu link.
Click the Desktop Navigation Menu link to view the Navigation Menu entries.

Edit the Tickets menu item by clicking on its name.

LA

In the Condition section, set Condition Type to User is Authenticated
(not public) and click Apply Changes. Figure 9-16 shows the expected value of
the condition.

Conditions
Condition Type User is Authenticated (not public)

PL/SQOL item / column=value item /column not null item / column null request=e1 exists never none

Figure 9-16. Setting the menu item condition
6. Repeatsteps 4 and 5 for the Analysis, Calendar, and Chart, and Admin menu
items.

Run the application now and click the Logout link. The Admin, Tickets, Analysis, Calendar, and Chart
menu items should disappear, leaving only the Home menu item and its children. Logging in again should
restore the display of the tabs as they were previously seen.

272

CHAPTER 9 * SECURITY

Access Control

APEX includes a built-in feature for creating an access-control framework with three roles: Administrator,
Edit, and View. The wizard is designed to create data structures to store the roles, pages to edit the
assignments, and authorization schemes to be used throughout an application. This wizard makes the job
of creating basic security capability very easy in an application. The summary of the objects created can be
seen in Figure 9-18 as the last step in the wizard.

There are, however, downsides to using the built-in access-control mechanism. If you require more
granular access control than the Administrator, Edit, and View roles provide, then you're likely going to want
to create your own access-control mechanisms from scratch. For the Help Desk application, these roles will
suffice. Here’s how to implement access control in the Help Desk application:

1. Navigate to the Application Builder home page for your application and click
Create Page.

2. Select Access Control and click Next.

3. Enter 620 for Administration Page Number and click Next.

4. Select Create a new navigation menu entry, allow the page to refresh, and
then enter Access Control for New Navigation Menu Entry. Then, set the
Parent Navigation Menu Entry to Admin, as shown in Figure 9-17. Click Next.

@ @

Navigation Menu

Navigation Preference Do not associate this page with a navigation menu entry
© Create a new navigation menu entry

Identify an existing navigation menu entry for this page
* M 2
New Navigation Menu Entry Access Control

Parent Navigation Menu Entry

< Cancel

Figure 9-17. Assign page 620 to a new menu entry under the Admin entry

5. Click Create, as shown in Figure 9-18.

273

CHAPTER 9 © SECURITY

Create Access Control
() (]

Confirmation

You have requested to create a page with the following attributes. Please confirm your selections.

<

Application 286

Page 620

Page Name Access Control Administration Page

Page Title Access Control Administration Page

Create Table APEX_ACCESS_SETUP

Create Table APEX_ACCESS_CONTROL

Create Authorization Scheme access control - administrator

Create Authorization Scheme access control - edit

Create Authorization Scheme access control - view

Cancel

Figure 9-18. Viewing the object summary as part of the Access Control wizard

With the completion of the wizard, all the objects have been created and are available for use. Before
you enable the security utility, you need to add some users to allow you to use the admin functions. Running
the application now, you may notice that the user name is simply an open text field. You should create a
list of values (LOV) as a shared component that contains all the users for whom you want to control access.
Because the access-control page is now part of the application, you can alter it as needed. To increase the
quality of the data entered, update the user field to be a select list:

6.
7.

10.

274

Edit Page 620.

Expand the Columns node for the Access Control List report.
Edit the ADMIN_USERNAME column.

In the Identification section, set Type to Select List.

In the List of Values section, set the Type to SQL Query and then enter the

following SQL Statement in the SQL Query text area and save your changes:

SELECT user_name d, user_name I
FROM users

CHAPTER 9 * SECURITY

When you run page 620, notice that no breadcrumb has been created for the page. You can do this
as follows:

'y

Navigate to the shared components for your application.

In the Navigation section, click the Breadcrumbs link.

Click the Breadcrumb icon to edit the breadcrumb entries.

Click the Create Breadcrumb Entry button in the upper right of the page.
In the Breadcrumb section, enter 620 for Page.

In the Entry section, enter Access Control for the Short Name.

In the Target section, enter 620 for Page.

© N o a s~ w0 N

At the top of the page, click Create Breadcrumb Entry.
Next, you need to associate a privilege with each of the existing users via the access-control pages:
9. Run the application and log in with the user SCOTT.

10. Navigate to the Access Control screen by clicking the Admin menu item and
then the Access Control sub-entry.

11. Inthe Access Control List section, click Add User.

12. Select Scott for Username, set Privilege to Administrator, and click Add User.

13. Select Doug for Username, set Privilege to Edit, and click Add User.
14. Select Patrick for Username, set Privilege to Edit, and click Add User.
15. Enter Martin for Username, set Privilege to View, and click Apply Changes.

Your results should look similar to those in Figure 9-19. Every time a new user is added, the listing in the
report updates. You can now use these users to test the application.

Access Control List

Identify usernames which comespond to this application's authentication scheme.

Find 30
Username 1| Privilege LastChanged By Date
DOUG s Edit : scoft Now
MARTIN : View : scoft Now
PATRICK s Edit : scott Now
SCOTT s Administrator ¢ scott Now

Add User

Delate Apply Changes

Figure 9-19. The Access Control List with user names and privileges

275

CHAPTER 9 © SECURITY

One of the features of the access-control utility is the ability to enable or disable the enforcement of the
utility itself. Running page 620 displays the header shown in Figure 9-20. By default, the access-control utility
is set to Full Access. To enable the access-control features, set the mode using the following steps:

16. Run Page 620.

17. Set Application Mode to Public read only. Edit and administrative privileges
controlled by access control list.

18. Click the Set Application Mode button shown in Figure 9-20.

Application Administration

Application Moda Full access to all, access control 51 not used
Rast

ad access. Only users defined in the access controd list are allowed,
O Public read only. Edit and administrative privileges controlled by access control list.

Administrative access only,

Set Application Mode

Figure 9-20. The access-control list enabled as public read only

You now have the editing forms in place and all the data set up properly, although the application isn’t
yet using any of the restrictions you've created. You will do that in the next section.

Authorization

Whereas authentication answers the question “Who are you?” authorization works to answer the question
“What are you allowed to do once logged in?” APEX provides shared components of an application called
authorization schemes. These authorization schemes can be applied to components within the application
to tell the APEX engine when the components should be executed or rendered.

When you created the access-control pages, APEX created three authorization schemes for you, one for
each role available in the edit screens: Admin, Edit, and View. Figure 9-21 shows the Authorization Schemes
shared component report.

Authorization Schemes Subscription by Component Utilization History
Q v Go 23 | B Actions Copy FReset
Name .| Type Caching Subscribed From Subscribers Updated
access control - administrator PL/SQL Function Returning Boolean Once per page view 13 minutes ago
access control - edit PL/SQL Function Returning Boolean Once per page view 13 minutes ago
access control - view PL/SOL Function Returning Boolean Once per page view 13 minutes ago

Figure 9-21. The authorization schemes created as part of the access-control mechanisms

276

CHAPTER 9 * SECURITY

The last step in this process is to start locking down pages using these authorization schemes. First, let’s
lock down the administrator section of the application so that only a user with Admin privileges can use it:

19. Edit Page 620.
20. Edit Page Attributes by clicking the page name.

21. Inthe Security section of the Properties Editor, set Authorization Scheme to
access control - administrator, as shown in Figure 9-22. Save your changes.

¥ Security

Authorization | access control - administrator | & [>
Scheme
r

Authentication Page Requires Authentication

L

Rejoin Application Default %
Sessions
Deep Linking Application Default s
Page Access Arguments Must Have Checksum 2
Protection

r
Form Auto On &
Complete
Browser Application Default &
Cache

Figure 9-22. Setting the authorization scheme at a page level

22. Repeat steps 22 and 23 for pages 600 and 610.

Now that the authorization scheme has been implemented on the administration pages, you can test
the security behavior. Only a user set up with the Administrator role on the access-control page can use
Admin pages 600 through 620.

Log in to the application as the user Scott, and you can navigate all the administration functions.
Logging in as any other user and clicking the Admin parent tab results in the message shown in Figure 9-23.

(%

No privilege for attempted action.

Access denied by Page security check

>Technical Info (only visible for developers)

Figure 9-23. Error message generated when the authorization scheme returns a denied result

277

CHAPTER 9 © SECURITY

The error message in Figure 9-23 isn’t very friendly. An application should make every effort to avoid
the type of event that would cause a privilege error. In this application, the Admin menu item should be
removed from the page when it doesn’t meet the access restrictions. You can accomplish this by applying the
same authorization scheme to the menu item itself:

23. Navigate to the Shared Components for your application.

24. Inthe Navigation section click the Navigation Menu link.

25. Click the Desktop Navigation Menu link to edit the navigation entries.
26. Edit the Admin menu entry by clicking on its name.

27. Under Authorization, set Authorization Scheme to access control -
administrator, and click Apply Changes.

Now, when running the application, if the user isn’t privileged with administrator access, the menu
item doesn’t display. This avoids the event that would cause the user to see the access-denied error message.

You've applied the authorization scheme at both the page level and the tab level for the administration
pages. Next, let’s remove the ability for a view-only user to create new records by associating the Edit
authorization scheme with the button required to create tickets:

28. Edit Page 200 of the application.
29. Edit the Create button by clicking its name.

30. Inthe Security section, shown in Figure 9-24, set Authorization Scheme to
access control - edit, and click Save.

¥ Security

Autherization access control - edit >
Scheme

Figure 9-24. Security setting for the buttons

31. Repeat step 32 for the Manage Multiple Tickets button.

To test this change, log in with the user name Martin. This user has been granted view privileges, so the
buttons on page 200 aren’t shown. Does this mean that Martin can'’t create tickets?

Let’s review the steps you applied to the Admin pages. Security was first applied to the page itself, and
then additional security was applied to prevent the access-denied error. In the case of the buttons to create
tickets, security to remove the buttons doesn’t prevent the page from being run directly either from the
Application Builder or by changing the page number in the URL to 210 or 230.

Important Removing or hiding a button, a tab, or another link doesn’t secure the target it was pointing at;
it only helps reduce errors seen by users on components that are already secure.

278

CHAPTER 9 * SECURITY

The design for the Help Desk application has the Manage Multiple Tickets page only available to users
with edit privileges, so the entire page is secured at the edit level. The single-record view of a ticket continues
to be visible to all authenticated users, but without the buttons related to record manipulation:

32. Edit Page 210 of the application.

33. Edit the Create button in the Manage Tickets region by clicking its name.

34. Inthe Security section, set Authorization Scheme to access control - edit.

35. Repeat steps 35 and 36 for the Delete and Save buttons as well as for the second
Create button located in the Ticket Details region. Remember to Save your
changes.

Note The previous step could also be completed by using APEX 5.0’s new multi-edit capability. Simply
multi-select the items you wish to edit and change the Authorization Scheme once for all selected items.

36. Edit Page 220 of the application.
37. Edit the Create button by clicking its name.

38. Inthe Security section, set Authorization Scheme to access control - edit.

39. Repeat steps 39 and 40 for the Delete and Save buttons. Remember to Save your
changes.

40. Edit Page 230 of the application.
41. Edit the page attributes by clicking the page name.

42. Inthe Security section, set Authorization Scheme to access control - edit, and
click Save.

Review the application now with different users. Notice how the user Martin can still navigate from the
Tickets report to view the details of the ticket, but there are no buttons to modify the records in the database.
Even though the form elements are editable, they aren’t written back to the database without the proper
form submission.

Read-Only Items

Normally, users can edit the contents of an item in APEX. There are instances where you want to prohibit
them from doing so, but you don’t want to hide the item entirely. At the conclusion of the previous step,
the user Martin doesn’t have the ability to save edits of the ticket information even though the form allows
Martin to change the contents of the form items.

To assist in preventing changes, each item in APEX has a read-only attribute that you can set
programmatically. The approach is similar to how item conditions are managed. Because the read-only
attribute can’t use an authorization scheme directly, you can use the APEX API APEX_UTIL.PUBLIC_CHECK _
AUTHORIZATION to determine whether a user has the rights to edit the data. This API takes a parameter of
the authorization scheme name and runs the verification, returning a Boolean result that can be used in
PL/SQL logic.

Although we could go and apply the read-only condition to each individual item in each region, there is
a way to make an entire region read-only.

279

CHAPTER 9 © SECURITY

Here are the steps to use the read-only attribute and the API just discussed:

1. Navigate to and edit the regions indicated in Table 9-1 by clicking the region
name on the respective page.

Table 9-1. Items That Require the Read-Only Attribute

Page Number Page 210 Page 220

Region to Update Manage Tickets Ticket Details

2. Inthe Read Only section, set Type to PL/SQL Function Body, as shown in
Figure 9-25. Set the value for PL/SQL Function Body to the following:

RETURN NOT APEX_UTIL.PUBLIC CHECK AUTHORIZATION('access control - edit');

¥ Read Only
Type PL/SQL Function Body & =
r
PL/SQL Function Body aJ
RETURN NOT
APEX_UTIL.PUBLIC_CHECK_AUTHORIZATION('access control
- edit');

Figure 9-25. Setting the region to be read-only using the Read Only attribute

When you run the application as Martin, information about a ticket on page 210 shows data without the
confusion of form elements. Authenticating as any other user shows the data in form elements and displays
the corresponding buttons. Results of the read-only view are shown in Figure 9-26; compare them to the

form in edit mode, shown in Figure 9-27.

Manage Tickets
Subject © Network drive not being mapped Days Open 110
Descr X: drive not being mapped to \corp\share
AssignedTo Tim Created On = 30-APR-2015 Created By
Closed On
Stasld OPEN Public Flag ~ N oY
14of 21
* Help
Cankii

Figure 9-26. Ticket record in read-only mode

280

Geddy

CHAPTER 9 * SECURITY

Manage Tickets

Subject = Network drive not being mapped DaysOpen 110

Descr X: drive not being mapped to \corp\share

AssignedTo Tim : CreatedOn = 30-APR-2015 Created By ~ Geddy

Closed On i
Statusid OPEN s Public Flag N DY
14 of 21

» Help

Cancel Delete m < >

Figure 9-27. Ticket record in edit mode

Data Security

At this point, the majority of the application is relatively secure. What you lack is data security applied to
segregate the data between application users. Any authenticated user can see and make changes to any
other user’s records. APEX doesn’t provide a built-in construct for securing data. APEX does support and
work well with other Oracle technologies that do secure data, such as Virtual Private Database, Oracle Label
Security, and Transparent Data Encryption.

Although there are a number of ways to deal with data segregation and security, one of the simpler
methods is to use a view to enforce the data available to a user in place of all references to the base table.
This method is effective and works with all versions of the Oracle database. The process works by adding a
securing function to the view that uses the current APEX user name, filtering out the data from other users.

To implement this data security, you will run a script that creates a new view named TICKET_SECURE_V
and then re-create the other two views, TICKET_ACTIVITY_V and TICKET_V, so they point to the secured view
rather than to the TICKETS table directly. Then you will make modifications to the other key components of
the pages that access ticket data so as to also use the new secure views. Here are the steps:

1. Locate, upload, and run the script ch9_data_security script.sql. Refer to
Chapter 4 if you need step-by-step instructions. You should see three rows in the
results report, all of which complete successfully.

2. Once the script completes, run the application and navigate to the Analysis page.
You should notice that only tickets or ticket details that are assigned to the user
you're logged in as appear.

Next, make changes to the source of several other pages so they reference the new secure objects you
just created:

3. Edit Page 200 of the application.

4. Select the Tickets report by clicking its name.

281

http://dx.doi.org/10.1007/978-1-4842-0466-5_4

CHAPTER 9 © SECURITY

5. Locate and open the file ch9_report_p200.txt, and then copy its contents into
the SQL Query text area, replacing everything that is there. Save your changes.

6. Run Page 200 and notice that you can only see the tickets that are assigned to the
current user.

You need to make a similar change on the Manage Multiple Tickets page:
7. Edit Page 230 of the application.
8. Edit the Manage Multiple Tickets report by double-clicking it.

9. Locate and open the file ch9_report_p230.txt and copy its contents into the
SQL Query text area, replacing everything that is there. Save your changes.

10. Run Page 230 and notice that you can only see the tickets that are assigned to the
current user.

Finally, you should also apply this rule to the chart, because it’s still allowing you to see the status from
all records in the system, which is inaccurate:

11. Edit Page 500 of the application.
12. Under the Tickets by Status chart, edit Series 1 by clicking its name.

13. Locate and open the file ch9_report p500.txt and copy its contents into the
SQL Query region, replacing everything that is there. Save your changes.

14. Run Page 500 and notice that the chart only reflects the status of either
unassigned tickets or tickets that are assigned the current user.

This is a huge leap forward in data security, but you're not quite finished. You may have noticed that if
you edit one of the records on page 210, you can use the Next (>) and Previous (<) buttons in the lower-right
corner to see records that belong to other users. Thus, you need to plug this security hole as well:

15. Edit Page 210 of the application.

16. The location of the process Get Next or Previous Primary Key Value is shown in
Figure 9-28. Edit the process by clicking its name.

282

CHAPTER 9 * SECURITY

i= s Ca &
Rendering i 2= || Bv
') Page 210: Manage Tickets
Pre-Rendering
Before Header
After Header
Processes
') Fetch Row from TICKETS
' Before Regions
Computations

5i| P210_DAYS_OPEN
1 Regions
Breadcrumb Bar
» Content Body
Manage Tickets

Figure 9-28. The location of the Get Next or Previous Primary Key Value process

17. Change the value of Table Name to TICKETS_SECURE_V, as shown in Figure 9-29.
If you use the LOV, make sure you search the View tab. Click Save.

Process
=[=| + G

¥ Identification
r

Name Get Next or Previous Primary Key Value
r

Type Form Pagination SlIiE

¥ Settings

<>

Table Owner Parsing Schema

r

Table Name TICKETS_SECURE V| A~
Primary Key TICKET_ID <
Column

r
Primary Key P210_TICKET_ID ~
Item

Figure 9-29. Update the source for fetching the next record

Now all of your data is secured based on who is signed on to the system. Or is it?

283

CHAPTER 9 © SECURITY

Session-State Protection

One of the most common ways to compromise a web application is through a form of attack known as URL
tampering. You don’t need to be a programmer or hacker to launch this type of attack, all you need to do is
alter the URL in your browser. APEX introduced the session-state protection feature in release 2.2. When
enabled, it adds a checksum value to the URL. If any portion of the URL is altered, the resulting checksum
doesn’t match what is expected, and the page simply won'’t render.

By default, APEX 5.0 enables session state protection at the application level and applies item-level
session state protection to any forms and reports that are built using the wizards. Thus, if a user were to
tamper with the APEX URL, it would prevent them from being able to see tickets assigned to other users.

Run the Tickets report on page 200 in the application. Hover your mouse over the Edit icon and examine
the URL. Notice the &cs= portion of the URL. The 8cs= parameter is the checksum that was automatically
generated by APEX. Alter the value for P210_TICKET_ID in the URL, or remove &cs= and everything to the
right of it, and try to run the page. You will receive an error message similar to that shown in Figure 9-30.

%)

The checksum computed on the
request, clear cache, argument
names, and argument values
(P210_TICKET_ID2
[nyhlaWoGGuBEEKkBWOQchy_HJO
B8AKDwkJQN_FX1KB1ey-
TE8EJBkvSxznnMM29r
TYEULJEKiT2eTY1H4zr9n-cGw])

did not match the checksum

passed into the show procedure
(P6G-BhivLPDgNXPX8YBi2eEUYXU7H
JZTFxGlg4 1w6StKxHwjx5unTgOieNI7
MQTtwd7ec5-vpOvDcUjGgbds-Q).
Note: End users get a different

error message.

Contact your application administrator.

Technical Info (only visible for developers)

Figure 9-30. Checksum error message as a result of URL tampering

284

CHAPTER 9 * SECURITY

Summary

In this chapter, you've applied new security to the Help Desk application by utilizing the key features of
APEX. You implemented a new custom authentication scheme to allow control over users who access the
sensitive parts of the application. You also reviewed conditional security with both authenticated and un-
authenticated individuals and added parameters to allow the application to be used