
Beginning Oracle

Application
Express 5

Your ticket to easy and robust
web-application development using
Oracle’s powerful toolset for
power-users, programmers, and
database administrators
—
Doug Gault

Whether you’re new to Oracle or an old hand who’s yet to test the waters of APEX, Beginning
Oracle Application Express 5 introduces the processes and best practices you’ll need to become
proficient with APEX. The book shows off the programming environment, the utilities and
tools available, and then continues by walking through the process of building a working
system from the ground up. All code is documented and explained so that those new to the
languages will not be lost. After reading this book, power users and programmers alike can
quickly put together robust and scalable applications for use by one person, by a department,
by an entire company.

Beginning Oracle Application Express 5 introduces version 5 of the popular and productive
Oracle Application Express development platform. Called APEX for short, the platform enables
rapid and easy development of web-based applications that make full use of Oracle Database.
The release of APEX 5 brings major new changes to the page builder, an enhanced universal
theme, better RESTful web services support, enhanced application packaging, and the many
redesigned wizards give a new and fresh feel to the user interface.

• Covers brand-new functionality in APEX 5
• Provides fully documented and explained example code
• Guides you through creating a working and fully deployable application

Beginning Oracle Application Express 5

www.apress.com

Gault
Beginning Oracle Application Express 5

THE E XPER T ’S VOICE® IN OR ACLE

Shelve in:
Databases/Oracle

User level:
Beginning–Advanced

SOURCE CODE ONLINE9 781484 204672

ISBN 978-1-4842-0467-2ISBN 978-1-4842-0467-2

www.allitebooks.com

http://www.allitebooks.org

Beginning Oracle
Application Express 5

Doug Gault

www.allitebooks.com

http://www.allitebooks.org

Beginning Oracle Application Express 5

Copyright © 2015 by Doug Gault

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0467-2

ISBN-13 (electronic): 978-1-4842-0466-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Technical Reviewer: Warren Capps
Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Matthew Moodie, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, email
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com/. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.allitebooks.com

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/
www.apress.com/source-code/
http://www.allitebooks.org

To those in search of knowledge and better understanding,
I dedicate this effort. Hopefully, as your skills grow,

you too will continue to share the wealth.

—Doug Gault

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

www.Apress.com
www.ioug.org
www.ioug.org/join
http://www.allitebooks.org

v

Contents at a Glance

About the Authors ���xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

 ■Chapter 1: An Introduction to APEX 5�0 ��� 1

 ■Chapter 2: A Developer’s Overview ��� 7

 ■Chapter 3: Identifying the Problem and Designing the Solution �������������������������� 37

 ■Chapter 4: SQL Workshop �� 45

 ■Chapter 5: Applications and Navigation �� 67

 ■Chapter 6: Forms and Reports: The Basics ��� 107

 ■Chapter 7: Forms and Reports: Advanced ��� 167

 ■Chapter 8: Programmatic Elements �� 231

 ■Chapter 9: Security �� 259

 ■Chapter 10: Application Bundling and Deployment ��� 287

 ■Chapter 11: Understanding Websheets ��� 309

 ■Chapter 12: A Websheet Example �� 339

 ■Chapter 13: Extended Developer Tools �� 359

 ■Chapter 14: Managing Workspaces ��� 383

www.allitebooks.com

http://www.allitebooks.org

vi

■ Contents at a GlanCe

 ■Chapter 15: Team Development ��� 401

 ■Chapter 16: Dynamic Actions �� 431

 ■Appendix A: Page Designer Walkthrough and Reference ���������������������������������� 449

Index ��� 469

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ��xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

 ■Chapter 1: An Introduction to APEX 5�0 ��� 1

What Is APEX? �� 1

A Brief History of APEX ��� 2

Ancient History ��� 2

More Recent History ��� 2

APEX 5�0 and the Future ��� 3

What You Need to Get Started �� 4

Access to an APEX Instance ��� 5

Web Browser �� 5

SQL Developer �� 5

Summary �� 6

 ■Chapter 2: A Developer’s Overview ��� 7

The Anatomy of a Workspace ��� 7

APEX Users ��� 8

Applications, Pages, Regions, and Items �� 9

Workspaces, Applications, and Schemas ��� 10

A Final Word on Workspaces �� 12

A Tour of the APEX Modules ��� 12

The Home Page �� 13

Application Builder ��� 16

www.allitebooks.com

http://www.allitebooks.org

viii

■ Contents

SQL Workshop �� 19

Packaged Apps ��� 32

Administration and Team Development �� 35

Summary �� 36

 ■Chapter 3: Identifying the Problem and Designing the Solution �������������������������� 37

Identifying System Requirements �� 37

Never a Clean Slate �� 37

A Broken System �� 38

How Do You Fix Things? �� 38

System Design with APEX in Mind ��� 40

Table Definition and User-Interface Defaults �� 40

APEX and Primary Keys �� 41

Business Logic vs� User-Interface Logic ��� 41

Placement of Database Objects �� 42

Translating Theory to Practice �� 42

Summary �� 43

 ■Chapter 4: SQL Workshop �� 45

Creating Objects with the Object Browser ��� 45

Loading Data with the Data Workshop Utility ��� 52

Creating a Lookup Table ��� 57

Loading and Running SQL Scripts �� 60

User Interface Defaults ��� 64

Understanding User Interface Defaults ��� 64

Defining UI Defaults for Tables ��� 64

Summary �� 66

 ■Chapter 5: Applications and Navigation �� 67

The Create Application Wizard �� 67

Sample and Packaged Applications ��� 68

Websheet Applications ��� 72

www.allitebooks.com

http://www.allitebooks.org

ix

■ Contents

Database Applications from Spreadsheets ��� 72

Applications from Scratch �� 73

Static Content Regions ��� 82

Public Pages ��� 87

Navigation Bar Entries �� 88

Global Pages ��� 91

Breadcrumb Regions �� 93

Breadcrumb Entries ��� 98

Lists �� 99

Lists of Values ��� 102

Static List of Values �� 103

Dynamic List of Values�� 104

Summary �� 106

 ■Chapter 6: Forms and Reports: The Basics ��� 107

APEX Forms �� 107

Form on a Table �� 109

Creating a Form on a Table ��� 109

Modifying a Form on a Table �� 115

Looking Behind the Scenes �� 120

Form on a Procedure �� 122

Creating a Form on a Procedure ��� 122

Modifying a Form on a Procedure �� 125

Looking Behind the Scenes �� 126

Master–Detail Report and Form ��� 127

Creating a Master–Detail Report and Form �� 127

Modifying a Master-Detail Report ��� 132

Session State ��� 137

Understanding Session State ��� 137

Sharing Database Connections ��� 138

www.allitebooks.com

http://www.allitebooks.org

x

■ Contents

Setting and Retrieving Session State ��� 139

Viewing Session State �� 140

APEX Items ��� 141

Page vs� Application Items�� 142

The Importance of Bind Variables ��� 142

Built-In Items �� 143

APEX URL Syntax �� 143

Searchable APEX Reports ��� 145

Creating a Searchable APEX Report�� 145

Adding Reset Pagination��� 147

Looking Behind the Scenes—APEX Report �� 148

Looking Behind the Scenes—APEX Master–Detail Forms ��� 150

More on APEX Forms �� 152

Item Layout ��� 152

Placing Multiple Items in the Same Row �� 154

Implementing LOVs ��� 156

Master–Detail Cleanup ��� 159

APEX Help ��� 160

Adding a Help Text Region �� 161

Seeding Help Text ��� 162

Declarative BLOBs �� 163

Summary �� 166

 ■Chapter 7: Forms and Reports: Advanced ��� 167

Tabular Forms �� 167

Creating a Tabular Form ��� 167

Modifying a Tabular Form ��� 172

Looking Behind the Scenes �� 176

Interactive Reports ��� 177

Creating an Interactive Report �� 177

Running an Interactive Report �� 181

xi

■ Contents

Restricting Functionality by Report �� 182

Restricting Functionality by Column ��� 184

Using the Column Heading Menu ��� 184

Searching by Column �� 185

Selecting Columns �� 188

Filtering �� 188

Sorting �� 191

Adding Breaks �� 191

Highlighting �� 192

Computing Columns ��� 193

Adding Aggregates ��� 194

Adding Charts to Interactive Reports �� 194

Grouping ��� 196

Pivot �� 197

Using Flashback ��� 198

Saving an Interactive Report �� 198

Resetting an Interactive Report �� 200

Getting Help �� 200

Adding a Subscription �� 201

Downloading ��� 202

Modifying an Interactive Report ��� 204

Looking Behind the Scenes �� 212

Calendars ��� 213

Understanding Calendar Types ��� 214

Creating a Calendar �� 214

Looking Behind the Scenes �� 222

Charts ��� 222

Writing Queries for Charts �� 223

Creating a Chart �� 224

xii

■ Contents

Filtering Data for a Chart �� 226

Looking Behind the Scenes �� 229

Summary �� 229

 ■Chapter 8: Programmatic Elements �� 231

Conditions �� 231

Required Values �� 231

Validations �� 234

Item-Level Validation �� 234

Page-Level Validation ��� 238

Tabular Form Validation �� 240

Computations ��� 242

Execution �� 242

Types �� 243

Creating a Computation �� 243

Processes ��� 246

Execution Points ��� 247

Process Types ��� 247

Processes in the Help Desk Application ��� 248

PL/SQL Regions �� 251

Dynamic SQL �� 253

Summary �� 258

 ■Chapter 9: Security �� 259

User-Maintenance Navigation ��� 259

User-Maintenance Data Entry �� 263

Authentication �� 269

Custom Authentication Schemes ��� 270

Conditional Security ��� 272

Access Control ��� 273

Authorization �� 276

xiii

■ Contents

Read-Only Items ��� 279

Data Security �� 281

Session-State Protection �� 284

Summary �� 285

 ■Chapter 10: Application Bundling and Deployment ��� 287

Identifying Application Components ��� 287

External Files �� 288

Database Objects �� 288

APEX-Based Files ��� 294

APEX Application Exports �� 296

Supporting Objects ��� 299

Prerequisites��� 300

Substitutions ��� 301

Build Options �� 301

Validations �� 301

Install �� 301

Upgrade �� 303

Deinstall �� 303

Export ��� 303

Messages ��� 303

Importing �� 304

Summary �� 308

 ■Chapter 11: Understanding Websheets ��� 309

Websheet Structure �� 309

Navigation �� 311

Content Navigation ��� 311

Structural Navigation �� 313

Help �� 313

Markup Syntax ��� 315

xiv

■ Contents

User Authentication �� 316

User Authorization �� 318

Sections�� 323

Text Sections �� 323

Navigation Sections �� 326

Data Sections ��� 327

Chart Sections �� 337

Annotations �� 337

Administration �� 338

Summary �� 338

 ■Chapter 12: A Websheet Example �� 339

Setup �� 339

Creating and Configuring a Websheet Application ��� 340

Adding Content to a Websheet ��� 345

Creating Data Grids ��� 345

Applying Constraints ��� 347

Adding Players �� 348

Creating Alternate Default Reports ��� 349

Creating Page Sections �� 350

SQL Tags ��� 357

Access Controls �� 358

Summary �� 358

 ■Chapter 13: Extended Developer Tools �� 359

Page Locks ��� 359

APEX Conflicts �� 360

Locking an APEX Page �� 360

Unlocking a Page �� 361

Administering Page Locks �� 361

xv

■ Contents

Application and Page Groups ��� 362

Application Groups ��� 362

Page Groups ��� 364

APEX Views and the APEX Dictionary ��� 364

The APEX Schema ��� 365

APEX Views ��� 365

APEX Dictionary �� 368

Searching in APEX �� 368

APEX Finder �� 368

Search Application �� 369

Monitoring Your APEX Application �� 371

Enabling Logging �� 371

Using the Activity Logs ��� 372

Login Attempts �� 373

APEX Advisor �� 373

Build Options �� 375

Understanding the Need ��� 375

Creating a Build Option ��� 376

Configuring Build Options ��� 377

Prompting for Build Option Status �� 377

Applying Build Options�� 378

Reporting on Build Option Utilization �� 379

Page-Specific Utilities �� 379

APEX and Oracle SQL Developer �� 380

Integration �� 380

Refactoring Support�� 381

Summary �� 382

xvi

■ Contents

 ■Chapter 14: Managing Workspaces ��� 383

Learning About Your Environment �� 383

Viewing Instance Information ��� 384

Checking the APEX Version ��� 385

Managing the Service �� 385

Workspace Preferences �� 386

Messages ��� 387

Managing Meta Data �� 388

Developer Activity and Click Count Logs �� 388

Session State �� 389

Application Cache ��� 390

Websheet Database Objects ��� 390

Application Build Status ��� 391

File Utilization ��� 391

Interactive Report Settings ��� 392

Managing Users and Groups �� 393

Creating One User ��� 393

Creating Multiple Users �� 394

Organizing Users into Groups ��� 396

Viewing Usage Reports and Dashboards ��� 399

Summary �� 399

 ■Chapter 15: Team Development ��� 401

Team Development Overview ��� 401

Team Development Interface ��� 403

APEX Home Page �� 403

Team Development Home Page �� 404

Common Design Elements �� 405

Drilldown Functionality ��� 406

Tagging ��� 408

xvii

■ Contents

Milestones �� 409

Milestones Report Tab �� 409

By Owner Tab �� 410

Features by Milestone Tab �� 410

Features ��� 411

Features Report Tab �� 411

History Tab �� 413

Progress Log Tab �� 413

To-Do Items �� 414

Bugs ��� 415

Feedback �� 416

Configuring Feedback ��� 416

Polishing the Feedback Page ��� 419

Viewing Feedback �� 423

Responses to Feedback �� 423

Communication Between Workspaces ��� 423

Team Development Utilities �� 424

Team Development Settings ��� 424

Release Summary �� 425

Enable Files �� 426

Feature Utilities �� 426

Manage Focus Areas �� 427

Update Assignees ��� 427

View Files ��� 427

Purge Data �� 427

Manage News ��� 428

Manage Links ��� 428

User Roles for Team Development ��� 429

Summary �� 429

xviii

■ Contents

 ■Chapter 16: Dynamic Actions �� 431

Dynamic Action Benefits �� 431

Breaking Down Dynamic Actions ��� 431

Dynamic Actions in the Help Desk Application ��� 432

Starting Simple ��� 432

Using Page-Level Events �� 439

Dynamic Actions with Multiple Triggering Elements �� 441

Dynamic Actions Using PL/SQL ��� 443

Dynamic Actions Using JavaScript ��� 445

Summary �� 447

 ■Appendix A: Page Designer Walkthrough and Reference ���������������������������������� 449

Page Designer Overview �� 449

Page Designer Toolbar �� 451

Tree Pane�� 453

Central Pane ��� 454

Grid Layout ��� 455

Messages ��� 457

Page Search ��� 458

Help �� 459

Property Editor ��� 460

Gallery �� 467

Keyboard Shortcuts �� 467

Summary �� 468

Index ��� 469

xix

About the Author

Doug Gault is a Consulting Member of Technical Staff at Oracle
Corporation and has been working with Oracle since 1988, starting with
version 5.1B, SQL*Forms 2.0, and RPT/RPF. He has focused his career on
Oracle’s development technologies, spending the majority of that time
dedicated to web-based technologies, including the OWA Web Toolkit,
PL/SQL Server Pages, WebDB, Oracle Portal, and more recently HTML-DB
and APEX.

His many years of Oracle experience have taken him all over the
world to participate in some truly groundbreaking projects. Doug has
presented and participated in roundtable discussions at a number of
conferences, including Oracle OpenWorld, UKOUG, and ODTUG’s
APEXposed & Kaleidoscope conferences. He holds an Associate’s Degree
in Computer Science and an honorary Master’s Degree from The School of
Hard Knocks, believing there is no replacement for hard-earned experience.

Doug can be found on Twitter as @dgault_apex and on his blog at
douggault.blogspot.com.

www.allitebooks.com

http://douggault.blogspot.com
http://www.allitebooks.org

xxi

About the Technical Reviewer

Warren Capps, president of Illuminations Inc, has worked with Oracle
since 1987 when he worked on version 5.1a. Since 1991, his principal
efforts have been spent in training clients in the use of Oracle products,
concentrating on database server technologies. He is a well-known
presenter at user-group conferences and has written numerous articles
and book reviews for a variety of publications. He also ran an Oracle
bookstore for ten years and is a retired Navy Commander.

When not teaching, Warren has myriad activities to keep him busy.
He is an avid photographer and has run photography workshops in
southern New Mexico. His photography has led him to visit over
25 countries. Additionally, he plays classical guitar, collects coins, and
loves to travel the country with his wife and cat. He is currently a resident
of Austin, Texas.

xxiii

Acknowledgments

First, my heart-felt thanks to all the co-authors of the original version of this book: Karen Cannell, Patrick
Cimolini, Martin D’Souza, and Tim St. Hilaire. Warren Capps also needs to be thanked for his technical
review efforts and his input on content and form. If not for these wonderful people, this book may never
have come to be. The opportunity to work with such a talented and distinguished group of individuals has
been a pleasure.

I’d also like to thank a few people who have been driving forces in my life: Kerry Osborne for providing
me with an immense amount of mentorship and encouragement over the years, even after having left his
employ; Cary Millsap for his friendship and helping to solidify in my mind how to think objectively about
technology and to use proof to find the truth; and last but not least, Scott Spendolini for his all-around
support before, during, and after the book. Without these people, I wouldn’t be where I am today.

—Doug Gault

1

Chapter 1

An Introduction to APEX 5.0

Welcome to the wonderful world of Oracle Application Express (APEX). You’re about to learn how to use
a tool that will revolutionize the way you think about and approach writing web-based Oracle systems. It
certainly has done so for me.

Prior to the advent of APEX, developing fully interactive, web-based systems for data that resided within
an Oracle database almost always meant learning a new and often complex language like Java, .NET, or PHP
and then figuring out how to integrate your chosen language seamlessly with that data. Often this also meant
trying to incorporate business rules that were already coded in the form of PL/SQL program units.

In such situations, it could take months or even years just to become proficient enough with your
chosen language to begin to write a functional system. If you’re like many developers, you become frustrated
with the fact that you’ve spent an inordinate amount of time doing what seems to be a relatively easy task.

Fear not! The days of long-winded and complex web-development platforms may be behind you.

What Is APEX?
APEX is a 100% browser-based rapid application development (RAD) tool that helps you to create rich,
interactive, Oracle-based web applications very quickly and with relatively little programming effort.

There are many RAD development tools and platforms on the market. If you’re dealing with data that
resides in an Oracle database, a number of things make APEX distinctive and thus more attractive as a
development platform. First and foremost, APEX is built on and uses as its core languages SQL and PL/SQL.
This is a huge advantage for those of you who have already been working with the Oracle database, because
it means you can immediately draw on what you know. Even if you don’t have an Oracle background, but are
going to be working with an Oracle database, you need to learn about its particular flavor of SQL and will at
some point likely find a need for the PL/SQL procedural language.

PL/SQL program units become even more beneficial when migrating from an Oracle-based system that
already has a significant amount of business logic coded into stored PL/SQL program units. In this instance,
you can almost immediately take advantage of that logic with very little effort or changes to the existing code.

Another great advantage is that APEX is a declarative tool that provides a feature-rich core of
functionality designed to make your job easier. Because APEX takes care of many of the underlying functions
common to all web-based applications, you can focus on the logic specific to your application.

A large share of what you need to accomplish can be done using one of the many built-in wizards
provided as part of the APEX Application Builder. The wizards walk you through the process of defining what
you want your application to do and then store that information as metadata. Once a wizard is complete, you
can edit and enhance the functionality or even replace it with your own custom SQL and PL/SQL routines.
After you become proficient with APEX, you might even find yourself bypassing the wizards altogether and
generating more-complex definitions directly.

Chapter 1 ■ an IntroduCtIon to apeX 5.0

2

During the course of this book, you’ll likely discover that you want a few other tools at your disposal,
but, in truth, you could easily develop a very rich application using nothing but your web browser and what
APEX provides for you.

A Brief History of APEX
APEX has been around for quite some time—perhaps even longer than most people know. The first public
release of APEX, or HTML DB, as it was called then, came in 2004, but its history reaches back a long way.

Ancient History
APEX has its roots in technology that has been around for quite a while. In fact, parts of the PL/SQL Web
Toolkit, which is used under the covers by APEX to generate the HTML that is sent to the browser, date back
to as early as 1994.

At that point in time, you could actually write web applications in PL/SQL by hand, and unfortunately
many of us did. This required not only a thorough knowledge of PL/SQL and HTML, but also the patience of
a saint and the determination of a headstrong mule. The end result wasn’t very pretty, and it was definitely
not secure by today’s terms, but it was functional, if somewhat limited.

Not long after, Oracle introduced PL/SQL Server Pages (PSPs). This involved first coding the static
HTML and including special Oracle markup to indicate where dynamic data would go. Once you had the
output looking as you wanted, you then ran it through a program called LOADPSP. This would translate
the raw HTML and the special Oracle markup into a PL/SQL procedure that, again, used the PL/SQL Web
Toolkit to emit the HTML, including the dynamic data you requested. At the time, this was a huge leap
forward. I worked at a company where I built an entire framework using PSP technology and deployed it at
several clients.

Finally, in 1997, WebDB came on the scene. The true grandfather of what is now called APEX, WebDB
was revolutionary in that it was a 100% web-based tool that allowed developers to design web applications.
It was written entirely in PL/SQL, even though Java seemed to be taking over the world. Developers could
point WebDB at their database and generate code that would produce forms, reports, charts, and calendars.
There was no session-state management, and there were no templates; once the code was generated, you
couldn’t go back through the tool.

WebDB allowed a large number of companies that wanted to jump on the web-based bandwagon to do
so without spending vast amounts of time and effort retraining their staff. As a tribute to its success, I know
of a number of companies that still have WebDB systems running in production environments.

Unfortunately, WebDB’s days were numbered. Because it generated code (and if you didn’t like the code
it generated, then too bad for you), it had already begun to fade from favor by the time it was absorbed into
Oracle’s Portal product. However, creator Mike Hichwa didn’t forget the glimpse of greatness that WebDB
had seen.

More Recent History
Around 1999, Oracle CEO Larry Ellison presented Mike Hichwa (VP of Software Development) with the
task of creating an internal calendaring and scheduling system for Oracle Corp. The original remit was to
use WebDB to generate the initial code and then hand-code all the changes from that point forward. Mike,
however, saw this as an opportunity to completely rewrite WebDB into something that could be far more
useful. Thus, with the help of Joel Kallman and Tom Kyte, Oracle Flows was born.

Chapter 1 ■ an IntroduCtIon to apeX 5.0

3

Based on the success of the internal calendaring and scheduling system, the team was allowed to
move forward toward making Oracle Flows a product. In 2001, using what was then known as Flow Builder,
Mike and his team began implementing systems for various customers, including one situation where they
managed to replace a Java development project that was going horribly wrong.

By 2003, the team had proven the tool’s power, and they were given permission to release it as a
product. HTML DB 1.5 was released to the public as a no-cost option of Oracle 10gR1.

Since then, various releases have been introduced, each providing improved features and functionality.
The following is a very brief list of the releases and some of the more notable features:

• HTML DB 1.6 (2004) introduced themes, master-detail forms, page groups, page
locking, and some multilingual capabilities.

• HTML DB 2.0 (2005) introduced SQL Workshop, a graphical query builder, a
database object browser, and session-state protection.

• APEX 2.2 (2006) introduced packaged applications, the APEX dictionary views, and
the access control wizard.

• APEX 3.0 (2007) introduced PDF printing with BI Publisher, migration from
Microsoft Access, and page and region caching.

• APEX 3.1 (2008) introduced interactive reports, the runtime-only installation
capability, and improved security.

• APEX 3.2 (2009) introduced a migration helper for Oracle Forms–based systems and
various security enhancements.

• APEX 4.0 (2010) was a huge leap forward, introducing dynamic actions and plug-
ins—declarative ways to introduce server-side logic and extend the core APEX
environment, respectively. Also introduced was the new Team Development
module.

• APEX 4.1 (2011) included a new user-facing data-uploading feature, enhanced error-
handling capabilities, and much-improved support for tabular forms.

• APEX 4.2 (2012) originally introduced some new themes as well as enhancements
to the debugging API, but over its more than two-year life span, patch releases
introduced such changes as HTML 5 charting and deeper security enhancements.

APEX 5.0 and the Future
And so we arrive at the release of APEX 5.0. While the changes introduced with versions 4.0 through
4.2 undoubtedly changed the landscape of APEX development, the changes introduced in version 5.0
have brought APEX to a point where it can rightly be compared with many of the popular desktop-based
development environments.

The original focus of APEX 5.0 was to make development of rich, interactive web applications easier
by providing the developer with a vastly enhanced development environment. However, the development
team has introduced so many new features—indeed, new ways to attack problems—that it will be hard not to
choose APEX as the preferred development platform for Oracle-based applications.

APEX’s new Page Designer Integrated Development Environment (IDE) completely changes the way
developers will interact with page design. Modeled after many of the popular desktop IDEs, developers now
interact with items, placement, attributes, and actions all on one page. A new drag-and-drop page-layout
interface has been introduced that allows developers to easily position regions and items. Group editing

Chapter 1 ■ an IntroduCtIon to apeX 5.0

4

allows developers to edit the attributes of several items at once. The only downside to the new Page Designer
is that you may find yourself wanting a bit more screen real estate due to the nature of its layout. However,
with widescreen monitors becoming ubiquitous, this shouldn’t be an issue for most.

Apart from the new Page Designer IDE, one of the most exciting new features of APEX 5.0 is the
Universal Theme. This new application user interface does away with the need for the complex templates
from days gone by and enables developers to build more modern, responsive, and consistent applications
without needing to know the intricate details of HTML, CSS, or APEX template design.

The new Universal Themes (Desktop theme 42 and Mobile theme 51) allow you to adjust a number
of attributes with what is called a Theme Style—a Cascading Style Sheet (CSS) that is added to the base
CSS. This can be done via the new Theme Roller tool, allowing you to visually alter a theme. The Universal
Themes also allow you to easily customize how items on the page are displayed by using Template Options.

After having been in the cards for quite some time, the Flexible Workspace Authentication has finally
been implemented by the APEX team; this allows APEX administrators to define how APEX itself will
authenticate developers. Much like APEX applications, workspaces may now be authenticated against Single
Sign-On servers, LDAP, and so forth.

Interactive Reports are no longer limited to being one-per-page, freeing you from the restriction that
had plagued them since their inception. Interactive Reports also get a few new features. A Pivot View has
been added that allows end users to select the column(s) and provide the function(s) by which to pivot the
report. This was functionality previously available only by either a lot of hand coding or by creating or using
plug-ins. When using the new Universal Theme, Report column headers can now be defined so that they
remain fixed in position while the user scrolls down the page.

Native support for Dialog page types has been introduced, thus allowing any page to be displayed either
normally or as a pop-up dialog. Pages can be defined as either “Modal” or “Non-Modal.” Modal pages do not
allow the end user to interact with the underlying page, whereas Non-Modal pages allow such interaction.

New jQuery Mobile and Tablet themes have been introduced and make use of the newer features of the
latest jQuery Mobile libraries. Panels, pop-ups, and dialogs (among other things) are now all available in the
mobile interface.

An improved charting engine provides enhanced performance for large datasets. Improvements to
accessibility for the visually impaired have been added. A new APEX_AUTHORIZATION package has been
added to aid in the management of authorization within an application. And the list goes on.

As you can see, the APEX core functionality continues to grow with each release. But what you may not
know is that you can help drive the future direction of APEX. By going to the following URL, you can not only
request new features, but also view and vote on features that others have requested. You need an Oracle
Technical Network account, but it’s free and easy to sign up:

https://apex.oracle.com/pls/apex/f?p=55447:1

To get a view of what the APEX team is committed to providing, you can read the most recent Statement
of Direction (SoD). It may take a short time after a release for this to be updated, but it normally contains an
overview of the main functional areas for the next planned release. You can find the SoD at the following URL:

www.oracle.com/technetwork/developer-tools/apex/application-express/apex-sod-087560.html

What You Need to Get Started
The goal of this book is to get you started using APEX, to launch you in a way that enables you to grow
toward mastery of the product. To begin, you need three things: access to an APEX instance, access to a web
browser, and a copy of SQL Developer.

https://apex.oracle.com/pls/apex/f?p=55447:1
http://www.oracle.com/technetwork/developer-tools/apex/application-express/apex-sod-087560.html

Chapter 1 ■ an IntroduCtIon to apeX 5.0

5

Access to an APEX Instance
This is definitely a hands-on book, so to work through the examples and exercises you need access to an
instance of APEX 5.0. There are a number of different ways you can access APEX; depending on your level of
comfort and expertise with Oracle, some may be better for you than others. Here is a description of the three
most common scenarios:

• By far the easiest is to sign up for an account on Oracle’s hosted version of APEX at
https://apex.oracle.com. It’s free for nonproduction applications and is a great
place to get started, because you don’t have to worry about installing either the
database or APEX.

• If you already have an Oracle database installed locally, you can download and
install APEX 5.0 into that instance. Simply go to the Oracle APEX home page at
http://otn.oracle.com/apex and download the latest version of the software.

• If you don’t have an Oracle database already but would like to install one locally,
you can download a free developer’s license version of the database from Oracle
Technology Network (OTN) at http://otn.oracle.com/database. Both Oracle 11g
and 12c run APEX 5.0. Both allow you to install APEX (albeit an earlier version) as an
option during the database install.

Although having a locally accessible instance of the Oracle database gives you more direct access to the
data, it’s definitely not necessary for completing the exercises in this book. All code and instructions have
been written so that they can be completed on Oracle’s hosted instance with no special access required.

■ Note oracle provides very good documentation on the installation process for both the database and
apeX, so it isn’t covered in detail here. however, if you’re planning to install apeX on an environment in your
organization, you should coordinate with the database administrator responsible for that instance to ensure that
no mishaps occur.

Web Browser
The APEX documentation states that to view or develop APEX applications, you must have a web browser
that supports cookies, JavaScript, HTML 5, and CSS 3. However, although you can deploy to any browser that
supports these things, the list of supported browsers is fairly narrow. Currently, the following browsers are
supported: Internet Explorer 9+, Firefox 35+, Apple’s Safari 7+, and Google Chrome 40+.

Without getting into a religious debate about which web browser is the best on the market, the author’s
preference for development is either Firefox or Chrome due to the number of developer tools and add-ons
that can help you with APEX development. Note that because of the difference in the way each browser
interprets HTML and JavaScript, you must test your application in any and all web browsers that your target
audience might use.

SQL Developer
As mentioned before, all the exercises and scripts in this book can be loaded and run directly within the
APEX interface. However, if you have chosen to install or have access to a local instance of the Oracle
database, a SQL IDE will definitely make your life easier.

https://apex.oracle.com/
http://otn.oracle.com/apex
http://otn.oracle.com/database

Chapter 1 ■ an IntroduCtIon to apeX 5.0

6

SQL Developer is a free SQL and PL/SQL IDE provided by Oracle. You can download SQL Developer
from the OTN’s home page at http://www.oracle.com/sqldeveloper.

Using SQL Developer, you can browse database objects, edit row data, develop and test stored PL/SQL
program units, code and test SQL statements, and interactively debug PL/SQL code. SQL Developer also
has many direct integration points with APEX that make reporting in, monitoring, and maintaining APEX
instances and applications easier. This book doesn’t cover those, but it’s definitely worth your time to look
into this tool.

Summary
Oracle Application Express has come a long way from its simple beginnings, and the APEX community is
poised at the beginning of a new cycle of growth. APEX 5.0 provides so much possibility and promise that
it’s hard not to be excited about what the future holds. With that spirit, you’re ready to begin your journey to
discover how APEX can make development easier and more fun.

http://www.oracle.com/sqldeveloper

7

Chapter 2

A Developer’s Overview

You’re probably anxious to get started, but there are a few concepts you should understand before you jump
into APEX development headfirst. This chapter will introduce the fundamental development architecture of
APEX and then walk you through the different areas of the developer interface.

You will delve deeper into the details as you go through the book and put the architecture to work, but
it will help tremendously to know how things are structured ahead of time. This chapter is designed to ease
you in, but it isn’t a complete guided tour of every nook and cranny. Be patient; you’ll get there.

The Anatomy of a Workspace
APEX was designed from the beginning to be a multi-tenant architecture where many different development
environments (called workspaces) can exist in a single APEX instance. For instance, apex.oracle.com,
Oracle’s free hosted instance, holds over 10,000 active workspaces, each of which is a completely separate
environment unable to see or interact with any of the others. You can think of this as Software as a Service
(SaaS) or a cloud-computing architecture, but basically it means each workspace is distinct and segregated
from all others.

In simple terms, each workspace represents a virtual private container in which developers create and
deploy their APEX applications. The development process takes place in the context of a workspace, so it’s
important to know how a workspace is structured. Figure 2-1 uses database entity-relationship diagram
parlance to help explain the makeup of the objects in a workspace.

Figure 2-1. Logical makeup of a workspace

Chapter 2 ■ a Developer’s overview

8

A workspace may have:

One to many users: These users may one of three types: Administrator, Developer,
or End User.

Zero to many applications: Applications can be added from the list of packaged
applications, imported, or created from scratch.

One to many schemas: Although a workspace must be assigned at least one
schema when it’s created, an Instance Administrator may assign multiple
schemas to a workspace.

There can be many applications and many schemas in a workspace, but an application may only parse
as one (and only one) schema, which can only be set during development. The following sections delve
more deeply into this to give you a full understanding of how these concepts relate.

APEX Users
To log in to an APEX workspace, you must have access to a valid APEX user. A number of different user roles
are available that dictate what you can do when you log in. The roles are as follows:

• Instance Administrators are special users who manage and maintain the overall
APEX instance. They can set instance-level preferences and messages, create and
manage workspaces, monitor space utilization, and perform many other actions
related to the overall APEX installation. Instance Administrators are only able to
log in to the special INTERNAL workspace, which houses the APEX Admin Services
application.

• Workspace Administrators are responsible for managing the details of a specific
workspace and can manage user accounts related to the workspace, monitor
workspace activity, view log files, override developer locks and settings, and so
on. Although it isn’t good practice, the Workspace Administrator can also act as a
Developer, creating and modifying applications.

• Developers are the users who create and edit the applications in the workspace. They
have access to the underlying tables in the schema(s) assigned to the workspace
and may create and modify database objects and stored PL/SQL units. Most people
writing APEX applications only need this level of access.

• End Users are only able to run applications in a workspace. They don’t have direct
access to any of the underlying database objects, nor do they have access to any of
the APEX development modules. End users can’t log directly into a workspace.

With the exception of the APEX Instance Administrator, in a default installation APEX users are specific
and unique to a workspace, meaning you can have users with the same name in multiple workspaces in a
single APEX instance, but each of these users is unique. They can have their own passwords and settings and
aren’t linked together in any way.

APEX 5.0 introduces the ability to use an external repository, such as Single Sign-on or LDAP, as a source
to assign and validate APEX users, meaning that a single user could have access to multiple workspaces.
However, this functionality is not set up by default and requires an Instance Administrator to configure.

When you’re developing, you should get in the habit of logging in as a Developer as opposed to a
Workspace Administrator. Several safeguards are available to help keep developers from stepping on each
other in a workspace. If you log in as a Workspace Administrator, these safeguards are bypassed, and you
may accidently interfere with something someone else is working on. Although this isn’t a problem in a
workspace with only one developer, it’s still good to get into that habit.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ a Developer’s overview

9

■ Note this book uses the last three types of user. it assumes that apeX has been installed, a workspace
has been created, and you have been given the workspace administrator’s login credentials. if you’re using
the hosted instance at apex.oracle.com, then the user name you were given when you signed up has the
credentials of a workspace administrator. if, however, you’re using a local instance, either refer to the apeX
documentation or get your instance administrator to help you set up a workspace.

Applications, Pages, Regions, and Items
Although a workspace starts off basically empty, you can have many applications that reside in a workspace.
There is no specific rule, but it’s likely that all the applications in a workspace share something: they might
all use the same underlying database objects, target the same user community, or use the same method for
authenticating users.

As you build an application, you add new pages and build out those pages with regions and items.
Figure 2-2 shows the hierarchy of the different types of objects.

Figure 2-2. General application hierarchy

Chapter 2 ■ a Developer’s overview

10

Applications are basically groups of pages that perform a task (or set of tasks) related to a business
function. During the course of this book, you’ll build one application in a single workspace, but it’s
important to know that in a typical development environment, you’ll probably be working on many
applications across several workspaces.

Pages are the basic building blocks of applications and contain both the user-interface (UI) components
and the programming logic that processes the user’s input. We cover the rendering of the UI versus the
processing of user input later, but for now consider a page to be roughly equivalent to a screen in desktop
UI lingo.

Regions are UI items that serve as content containers. You can have any number of regions on a page,
and regions can be nested in other regions. This gives you the opportunity to create things like dashboards,
where you might nest a data report region and a graph region in a single parent HTML region.

Items are the HTML form elements that are used to present the UI to the user. These include things such
as buttons, select lists, text fields, check boxes, radio groups, and so on. There are two categories of items:
page-level items and application-level items. The difference is that the latter are defined at the application
level and aren’t rendered directly on the page. You can think of these as global variables. Page-level items
are defined on a specific page and are assigned to a region in order to control where and how they display to
the user.

There is obviously a lot more to an application than these simple building blocks, but if you understand
the basic hierarchy between these, you’ll have a jumpstart when it comes to building your first pages and a
solid foundation when it’s time to perform more intricate tasks.

Workspaces, Applications, and Schemas
Although the relationship between workspaces and applications is straightforward, it becomes a bit more
complex when you introduce the relationship with database schemas. Figure 2-3 diagrams this relationship.

Figure 2-3. How schemas relate to workspaces and applications

When a workspace is created, it’s linked with at least one, and possibly many, underlying database
schemas. This provides access to database objects such as tables, views, stored PL/SQL program units, and
so on.

When an application is created, it’s assigned a single “parse as” schema from the list of schemas
associated with the workspace. A “parse as” schema is the Oracle database user in which all SQL queries
and PL/SQL calls run by that application are executed. So, if your application was defined with a “parse as”
schema of DOUG, a query such as

select * from emp

would execute in the database as if it were written

select * from DOUG.emp

Chapter 2 ■ a Developer’s overview

11

Because APEX applications are portable and may not necessarily be run in the same schema they were
developed in, it’s not good practice to hard code the schema names into your SQL or PL/SQL. Instead, APEX
provides a replacement variable (one of many you’ll be introduced to throughout the course of this book) for
the “parse as” schema. The #OWNER# replacement variable is substituted for the actual “parse as” schema for
the application at runtime. So the statement

select * from #OWNER#.emp

resolves to

select * from DOUG.emp

In the most common implementations, a workspace is created and associated with a single underlying
database schema. The applications developed in that workspace have their “parse as” schema set to the only
schema associated with the workspace and use the database objects belonging to that schema.

Where a workspace has more than one schema assigned to it, things can become a little more complex.
You might be tempted to think that if you associate three schemas with a workspace, any application in that
workspace can automatically access the data in all three schemas. However, you would be mistaken.

Because an application is assigned one—and only one—“parse as” schema, all SQL statements and PL/
SQL calls are executed as that schema. Although the workspace may be associated with multiple schemas,
the application itself isn’t. If you want to access data in a schema other than the application’s “parse as”
schema, you must make sure the correct database-level grants are in place, just as you would when using
any other Oracle tool or development environment.

Take a look at the example shown in Figure 2-4, where two tables you wish to join as part of a SQL
statement are owned by separate schemas.

Figure 2-4. Tables joined across schemas

If your “parse as” schema is DOUG, then you must be specifically granted privileges on the objects in the
JOEY schema to be able to access it. To do this, you sign on to the database as JOEY (or as a DBA) and grant
the appropriate database privileges on JOEY.DEPT to DOUG.

In this example, if you needed to join the two tables together in a select statement, granting the SELECT
privilege on JOEY.DEPT to DOUG would suffice. Then, you could write your select statement as follows:

select e.empno,
e.ename,
d.dept_name,
d.location

 from #OWNER#.emp e,
JOEY.dept d

 where e.deptno = d.deptno

The #OWNER# substitution variable would be resolved to your “parse as” schema (DOUG), and the join
would work correctly as long as the correct privileges were in place.

Chapter 2 ■ a Developer’s overview

12

■ Note Because the grants that allow the select from the JOEY schema are put in place at the database
level, it isn’t necessary to associate the JOEY schema to your workspace. You only need to associate a schema
to a workspace if you’ll be using it as the “parse as” schema for an application in that workspace or need to
access the schema objects directly from within the sQl workshop.

A Final Word on Workspaces
As you have learned, an APEX instance can have many workspaces. But how many workspaces should there
be? The answer isn’t straightforward.

Unless you’re in a very small organization with very few apps, you probably shouldn’t have only one
workspace. On the other hand, you probably shouldn’t create a new workspace for every new application
you code, either.

There are a couple schools of thoughts on this, but I tend to think in terms of application suites. If a
number of applications are performing similar tasks against the same underlying data sets and are aimed at
the same target set of users, then they would probably do well in the same workspace.

The key is to use your judgment and try to keep things easy to develop and maintain. There is nothing
worse than logging in to a workspace to find you have to page through tens or even hundreds of apps to find
the one you want to work on.

A Tour of the APEX Modules
Now that you have a little background on how things are logically architected, it’s time to get a closer look at
the APEX development environment. This section will introduce you to the different sections of the APEX
environment and give you an overview of how things are laid out.

Figure 2-5 shows a hierarchical layout of the APEX menu structure. Later, you will look at each of the
main sections and glimpse what’s under the covers; this is just an introductory tour. You will get a much
deeper look as we work our way through the development processes.

As you can see, the development environment is broken into five main sections:

• The Application Builder is where you create and modify applications and pages, and
it’s where you’ll probably spend most of your time.

• The SQL Workshop is where you deal directly with the underlying database objects
and their related data. Think of it as a web-based version of SQL*PLUS with some
GUI goodness thrown in to make things easier.

• Team Development is the section that lets you enter and track information related to
the development of APEX applications.

• Packaged Apps provides a way to install and manage the myriad of applications
that come with Oracle APEX. Many of these applications can be used out of the
box to solve real business problems. Others are merely sample applications to help
demonstrate the capabilities of APEX.

• Administration is where you can manage the details of your workspace—its defaults,
users, groups, and so on. Be aware that a Workspace Administrator has more options
available to them than a standard developer has.

Chapter 2 ■ a Developer’s overview

13

Figure 2-5. APEX 5.0 hierarchical menu structure

The Home Page
Once you log in to your workspace, you’re presented with the workspace Home page, as shown in Figure 2-6.
The Home page is your gateway to the rest of the development environment and provides some high-level
information about what’s going on in the workspace.

Chapter 2 ■ a Developer’s overview

14

Figure 2-6. APEX development Home screen

Along the top is the navigation bar containing the main navigation structure available to you throughout
the developer interface. It gives direct access to many of the sections you will need quick access to while
you’re developing applications. It’s worth noting that each main option of the menu bar is broken down
into two pieces. For instance, if you click directly on the Application Builder item, you’re immediately taken
to the Application Builder home page. However, if you click the small downward-pointing arrow just to the
right, you’re presented with a more detailed drop-down menu that lets you choose your destination a bit
more granularly, as in Figure 2-7

Chapter 2 ■ a Developer’s overview

15

At the right of the navigation bar is a set of four menu options represented by icons, as shown in
Figure 2-8.

Figure 2-7. Using the drop-down menus on the menu bar

Figure 2-8. Right-hand icons on the navigation bar

First is a search icon that, when clicked, allows you to perform context-sensitive searches. The context
of the search depends on where you are in the Application Builder. For instance, if you’re on the workspace
Home page, your search is across the entire workspace. However, if you’re in the Application Builder or the
Administration section, the search is limited contextually to those specific areas.

Second is the Administration menu. This menu will be available to you whether you are a Workspace
Administrator or a Developer. The difference will be what functionality you have access to. Developers will
have access to monitoring certain areas of the workspace activity and to the dashboards, while Workspace
Administrators will have full access to all functionality including user maintenance and service requests.

Third is the help menu, which provides access to online documentation, the APEX Support Forums, the
APEX section of the Oracle Technical Network site, and an About section.

Last is a link to the profile of the currently logged in user. Here, the user will be able to edit their details,
update their profile picture, and change their password.

At the very bottom of the browser is an information region that displays the currently logged in user, the
current workspace, the language, and the current version of Oracle APEX.

Chapter 2 ■ a Developer’s overview

16

The rest of the page is dedicated to either giving you a quick link to the four main sections or providing
you with information about what’s going on in the workspace.

The first two regions, from left to right, show an overview of the activity in the workspace. They show the
Top Applications and the Top Users in the workspace. The News & Messages region allows the developers
in a workspace to enter information they want others in the workspace to see. In a new workspace, there
probably won’t be anything in these regions, but as you work your way through the book, you’ll see that start
to change.

Notice that most of the main pages for each section of the development environment adhere to this
dashboard-style home page interface, the notable exception being the Application Builder. Let’s look at that
section first.

Application Builder
The Application Builder is the core of the APEX application-development environment. Whereas you’ll use
the SQL Workshop to manipulate the underlying database objects, you’ll use the Application Builder to do
most of the real work when it comes to coding, testing, and debugging your applications.

The Application Builder Home Page
Clicking the Application Builder menu option takes you to the Application Builder home page. Like most
of the home pages, it’s laid out with the menu bar across the top and regions that hold tasks and quick links
down the right side.

The main difference is that Application Builder home page doesn’t house any dashboard-style
summaries. Instead, this is where you see a list of the different applications contained in your workspace.
(Figure 2-9 provides an example.) It’s possible, depending on your APEX instance settings, that you might
see some sample applications installed by the Workspace Administrator, but don’t be alarmed if you don’t
see any applications at all.

Chapter 2 ■ a Developer’s overview

17

Figure 2-9 shows one application in the workspace, named Sample Master Detail. However, there isn’t
much information about it other than its name and the application ID (118). This is where you begin to see
the beauty of what APEX can do, not only in the developer UI, but also in your applications.

The list of applications you see is actually a style of report called an Interactive Report (IR). IRs allow us
to customize how reports and their contents are displayed. IRs are used throughout the APEX development
interface and can also be used when creating your own applications. They’re extremely powerful tools, and
you’ll use them a lot.

On the right side of the page are three regions that show About information, recently edited
applications, and a link to the Application Migration wizard. You will deal more with these later; for now, we
will drill in to see the details of an application.

The Application Home Page
Clicking any one of the applications listed drills into the Application home page, as shown in Figure 2-10.
This page is very similar to the Application Builder home page, but it shows all the pages in a specific
application. Again, it uses an IR, so you can customize the way you see this data.

Figure 2-9. The Application Builder home page

Chapter 2 ■ a Developer’s overview

18

Notice the way the page is structured, with page-related tasks and recently edited pages presented along
the right side of the page. This layout will become a familiar theme as you navigate through the interface.

From here, you can click any of the listed pages to edit that page using the Page Designer. You can also
run, export, and import the application, edit the supporting objects or shared components, and access the
application-related utilities.

The Page Designer
The Page Designer is where you’ll be spending most of your time as a developer creating and editing pages,
regions, and items. The Page Designer in APEX 5.0 is a complete departure from previous versions and is now
presented in a way that much more closely resembles traditional Desktop IDE layout. This change has brought
us the ability to manage components and edit their layout and properties from a single-page interface.

Figure 2-10. The Application home page

Chapter 2 ■ a Developer’s overview

19

One of the biggest changes is that, due to the single-page interface, alterations to a page must now be
explicitly saved. While this may seem disruptive, it actually brings with it some useful functionality. For
instance, now multiple changes can be made and saved all at once, potentially reducing development time.
Also, unsaved changes can now be easily undone.

Another major time-saving feature is the ability to select multiple components on a page using
Shift+Click (or Cmd+Click on Mac). Once multiple items are selected, you can edit their common
properties in the property editor. This can be useful if, for instance, you want to edit the attributes of all
buttons on a page to set their visual properties to all be the same.

Region and item placement has been enhanced with the introduction of a drag-and-drop interface. All
rendering components can be easily placed or rearranged on the page.

The layout of the new Page Designer is quite in-depth and, if you’re not familiar with it, can potentially
be a bit perplexing. Appendix A at the back of this book will give you a detailed tour of the Page Designer and
its components, laying out the nomenclature that will be used through the rest of this book. Take a moment
to thumb through Appendix A to familiarize yourself with the terms and the placement of the tools.

It is my goal for the rest of this book to take you through the development process in a way that will
help you naturally learn how to use the Page Designer. However, if you’re ever confused by an instruction or
forget what a particular tool is called, referring to Appendix A should help clear things up.

SQL Workshop
The SQL Workshop is a suite of tools that provides developers with the ability to view and manage database
objects in the underlying schema(s) assigned to the workspace. The SQL Workshop home page shown
in Figure 2-11 lets you access each of the underlying tools and gives some high-level information about
recently created objects and commands that that have been run.

Chapter 2 ■ a Developer’s overview

20

Because there may be more than one schema assigned to the workspace, a schema-selection dialog
at right allows you to select and set the default schema for all the tools. You may change the schema you’re
working in within each of the tools as well.

The main tools available as part of the SQL Workshop are displayed in the toolbar at the top of the page.
Each of the individual tools deserves its own introduction, so let’s spend some time now looking at what they
are and what they can do. You’ll use this area of APEX more heavily when you create the database objects for
your application.

The Object Browser
If you’ve been working with databases for any length of time, you’ve probably used one of the more popular
GUI tools that allows you to browse and manage database objects in a schema. The APEX Object Browser is
a very similar tool presented through your web browser. Figure 2-12 shows the Object Browser being used to
examine the table EBA_DEMO_MD_DEPT.

Figure 2-11. The SQL Workshop home page

Chapter 2 ■ a Developer’s overview

21

The name Object Browser is somewhat of a misnomer, because the tool can be used not only to browse
the objects in the underlying schema(s), but also to create new objects, browse and edit data, delete objects,
and edit object definitions. Although there are some limitations on the types of objects it can manipulate, it’s
powerful enough to do most of the daily tasks that an application developer needs to tackle.

You choose the object type you want to work with by selecting it from the drop-down list in the upper-
left corner. You can search the selected object type by entering a text string in the search box just below it
and clicking the refresh icon to the right. Clicking the name of an object displays its properties along with
links to drill into more details.

Although the interface for the Object Browser is pretty intuitive, there are some interesting things to note. In
the upper-right corner is a drop-down list that allows you to set the current schema. The list contains all schemas
currently assigned to the workspace. You can switch between them simply by choosing a new one from the list.

The SQL Commands Interface
The SQL Commands interface allows you to interact with the underlying schema(s) using standard SQL
commands or PL/SQL as you would in any other GUI tool or in SQL*Plus. The difference is that you can
save the statements for use at a later time. Figure 2-13 shows a simple SQL statement as executed in the SQL
Commands interface.

Figure 2-12. The APEX Object Browser

Chapter 2 ■ a Developer’s overview

22

Figure 2-13. The SQL Commands interface

Chapter 2 ■ a Developer’s overview

23

Although its core function is quite straightforward, the SQL Commands interface is more robust than
it first appears. Beyond the ability to save and retrieve SQL and PL/SQL, it can also run explain plans on
statements and allow you to view your statement history. Therefore, if you ran a script or statement that was
particularly useful, but you forgot to save it, you still have the ability to retrieve it from the history buffer.

The SQL Commands interface also integrates with the Query Builder (described later), allowing you to
load and manipulate saved statements that were built in the Query Builder.

■ Note By default, all sQl statements executed via the sQl Commands interface are automatically
committed. to override this setting and enter into transactional mode, uncheck the autocommit check box in the
toolbar. once this is done, you can manually both commit and roll back your sQl statement.

there is no way to turn off autocommit permanently, so you need to remember to do this any time you want to
enter transactional mode.

SQL Scripts Interface
The SQL Scripts interface allows you to manage and run sets of SQL commands that are saved into script
files. A single script can contain one or more SQL statements or PL/SQL blocks. SQL scripts coded outside
of APEX can be loaded into the SQL script repository and edited or run from there. You can also create SQL
scripts from scratch using the SQL Scripts interface. Figure 2-14 shows the main SQL Scripts interface page.

Figure 2-14. The main SQL Scripts interface page

Chapter 2 ■ a Developer’s overview

24

In this example, one script, called database_objects.sql, is loaded into the script repository. By
clicking the Edit icon, you can edit the contents of the script, as shown in Figure 2-15. Helpfully, APEX
provides syntax highlighting in the Script Editor. The editor also has a Find and Replace function and
autocomplete, as well as undo and redo capabilities.

You can also download the script to a local file so you can edit it in your favorite local text editor. When
you’re done, simply cut and paste it back into the editor or upload it as a new script file.

Figure 2-15. The SQL Script Editor

Chapter 2 ■ a Developer’s overview

25

■ Note when you upload a script file to the repository, the name of the script must be unique. You can’t
overwrite an existing script file of the same name with a new version without first deleting the existing script
from the script repository.

Once a script is ready to run, you can click the Run icon in the list (or the Run button in the editor), and
you’re stepped through the Run Script wizard. This allows you to choose whether you want to run the script
immediately or run it in the background. If you choose Run in Background, your script is entered into a
queue, and it is executed when it reaches the front of the queue.

Either way, you’re taken to the Manage Script Results page of the SQL Scripts interface, as shown in
Figure 2-16. This screen allows you to see the status and certain high-level details of the script’s execution. In
the case of scripts that have been submitted in batch mode, you can also see the status of specific scripts in
the queue.

Figure 2-16. The Manage Script Results page

Chapter 2 ■ a Developer’s overview

26

Clicking the View Results icon shows you the final results of running the script. In Figure 2-17, you can
see that the script had errors, the details of which are displayed in the body of the report. If the script were
successful, no errors would be shown, and the statement results at the bottom of the page would show
zero errors.

Figure 2-17. An example of errors from the SQL Scripts interface

■ Note although both the sQl Commands and the sQl scripts interfaces can accept and run standard sQl
statements, the extended commands of sQl*plUs aren’t valid in these tools.

the sQl Commands interface throws an error when it encounters any sQl*plUs-specific commands. however,
the sQl scripts interface warns the user of the existence of sQl*plUs commands in a script being run and then
ignores them if the user chooses to continue. Because of this, the sQl Commands and sQl scripts interfaces
can’t perform many of the functions of extended sQl*plus scripts.

Chapter 2 ■ a Developer’s overview

27

The Query Builder
Although the Query Builder has been relegated to the Utilities page, it merits discussion specifically because
it’s helpful to beginners. The Query Builder allows you to build SQL select statements using a more
graphical interface, and although it’s not quite drag and drop, it’s fairly intuitive.

When you first enter the Query Builder, you’re presented with a screen that lists all the tables and views
available in the currently active schema. Figure 2-18 shows the initial Query Builder screen.

Figure 2-18. The initial Query Builder screen

From here, you can begin to build your query. To include a table in your select statement, simply click
it in the list to the left. A representation of the table is placed in the blank region of the screen above the
Conditions region. You may add as many tables as you like to your query, and can even include the same
table more than once by clicking it again. Notice that if you include more than one instance of the same
table, the new instance is suffixed with a sequence number differentiating it from the original table.

Chapter 2 ■ a Developer’s overview

28

Figure 2-19 shows an example graphical representation for the DEMO_ORDERS table and outlines the
different interactive features.

Figure 2-19. The DEMO_ORDERS table as represented in the Query Builder

Taken from top to bottom as they appear in Figure 2-19, these action areas are as follows

• Table Actions displays a dialog allowing you to do one of several things:

• Check All allows you to quickly select or deselect all columns of the object for
inclusion in the query being built.

• Add Parent allows you to select and add a parent table, as defined by foreign-
key relationships, to the Query Builder.

• Add Child allows you to select and add a child table, as defined by foreign-key
relationships, to the Query Builder.

• Show/Hide Columns expands and collapses the object so the column definitions are
shown or hidden.

• Remove deletes the table and any of its related clauses from the select statement.

• Select Column for Join is activated by clicking the blank square next to a column
name. Doing so darkens the square and puts the Query Builder into Table Link
mode. Then you can click another blank square, either in another table or in the
same table, and the Query Builder inserts an EQUALITY where clause between the
two columns in the SQL statement.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ a Developer’s overview

29

• Data Type Indicator indicates the data type of the column, such as number,
character, date, and so on.

• Column Name indicates the column name as defined in the table description.

• Column Selector allows you to individually select or deselect columns to be included
in the SQL statement for processing. This may also include columns that you want to
use in the where clause but not display in the output of the SQL statement. The basic
rule is that you need to select all the columns you want to display, but you don’t
necessarily have to display all the columns you select.

As you add and join tables and select columns to operate on, the region at the bottom of the screen
begins to change. This region is subdivided into several tabs, as follows:

• The Conditions tab shows one row for each column selected in the area above and
allows you to further define its attributes. (More on this feature in just a moment.)

• The SQL tab displays the SQL statement as the wizard builds it. Although it’s not
directly editable, you can easily highlight the statement and copy it to the clipboard
from here.

• The Results tab shows the results of running the SQL statement and allows you to
download the resulting data in CSV format.

• The Saved SQL tab allows you to save, recall, and manage statements that have been
built with the Query Builder. There are also filters that allow you to search and limit
which saved queries are displayed.

All but the Conditions tab are self-explanatory, so let’s go over this one in a little more detail. Figure 2-20
shows an example two-table join, with five columns selected to operate on.

Figure 2-20. An example two-table join

Chapter 2 ■ a Developer’s overview

30

In this example, the following modifications have been applied to the query:

• Changed the alias of the ORDER_TOTAL column to SUM_OF_ORDERS

• Limited the result set to only those records where ORDER_TOTAL is less than 500

• Sorted the records returned by CUST_LAST_NAME, CUST_FIRST_NAME ascending

• Performed a SUM function on the ORDER_TOTAL column

• Grouped the query by USER_NAME, CUSTOMER_ID, CUST_FIRST_NAME, CUST_LAST_NAME

Based on the column selections as well as the restrictions and changes introduced in the Conditions
tab, the SQL statement (as it appears in the SQL tab) looks like this:

select DEMO_ORDERS.USER_NAME as USER_NAME,
DEMO_CUSTOMERS.CUSTOMER_ID as CUSTOMER_ID,
DEMO_CUSTOMERS.CUST_FIRST_NAME as CUST_FIRST_NAME,
DEMO_CUSTOMERS.CUST_LAST_NAME as CUST_LAST_NAME,
sum(DEMO_ORDERS.ORDER_TOTAL) as "SUM_OF_ORDERs"

 from DEMO_ORDERS DEMO_ORDERS,
DEMO_CUSTOMERS DEMO_CUSTOMERS

 where DEMO_CUSTOMERS.CUSTOMER_ID=DEMO_ORDERS.CUSTOMER_ID
 and DEMO_ORDERS.ORDER_TOTAL <500
group by DEMO_ORDERS.USER_NAME,

DEMO_CUSTOMERS.CUSTOMER_ID,
DEMO_CUSTOMERS.CUST_FIRST_NAME,
DEMO_CUSTOMERS.CUST_LAST_NAME

order by DEMO_CUSTOMERS.CUST_LAST_NAME ASC,
DEMO_CUSTOMERS.CUST_FIRST_NAME ASC

Although the Query Builder is very useful and allows you to put together a basic query fairly quickly
using a simple GUI, it does have its limitations, such as nested subqueries and complex unions. We can use
the Query Builder to get the skeleton of a query defined; we can then take the query to the SQL Commands
window or a SQL IDE and fine tune it from there.

As a final note, it’s worth mentioning that the Query Builder is linked to from several places in APEX,
so any time you’re prompted for a SQL statement (for example, as the basis for a report), you can open the
Query Builder in a pop-up window and return the query to the calling form.

Utilities
The SQL Workshop Utilities section gives you access to tools and reports that help you view and manage
information about the underlying database objects and their data. This section introduces each tool set and
its main purpose. However, the majority of these tools are very straightforward, so in most cases the deep
details are left for you to explore on your own.

The Utilities home page (as shown in Figure 2-21) presents a quick, icon-based menu you can use to
reach the individual utility areas. Clicking any one of these icons will take you directly to the tools page for
that category.

Chapter 2 ■ a Developer’s overview

31

You’ve already seen the Query Builder, which gives users the ability to visually create queries.
The Data Workshop provides tools that import and export data in many different formats, including

comma- or tab-separated data, XML data, or spreadsheet data. These tools also help you manage files that
you have loaded into either the text or spreadsheet repository.

The Generate DDL wizard allows you to choose a schema associated with the workspace and then
generates a script that can be used to re-create some or all of the objects with that schema based on your
selection. The generated script doesn’t include any insert statements for the data that resides in the database
objects, but it’s a good way to easily re-create the underlying objects an application might use.

The Methods on Tables wizard generates an Application Programming Interface (API) based on a
specific table or set of tables. For each table selected (up to ten named tables), the generated package
contains a procedure for each of the following actions: Insert, Update, Delete, and Select. The benefit of
using table APIs instead of accessing the table directly is that any required validation logic can be included
once, in the API, and accessed from various alternate interfaces including APEX.

The Object Reports are actually a set of utilities that let you get detailed information about the different
types of objects that live in the “parse as” schema(s) assigned to the workspace. Although most of the reports
have to do with tables, others deal with PL/SQL objects, invalid objects, grants and permissions, and so on.
This is a good place to find details of the objects in your working schema.

The Schema Comparison utility allows you to compare the objects in two separate schemas and create
a difference report. You may choose to compare only certain attributes or all attributes of the objects in the
selected schemas. The limitation here is that both schemas must be assigned to the workspace in order for
the comparison to take place.

User-Interface Defaults allow you to define default display attributes for APEX regions and items. The
utility lets you manage these UI defaults at two different levels: Table Dictionary and Attribute Dictionary. UI
Defaults will be discussed in more detail later.

Figure 2-21. The SQL Workshop Utilities home page

Chapter 2 ■ a Developer’s overview

32

About Database and Database Monitor are special utilities that require the user running them to
have access to a database login that has been granted the DBA role. The Database Monitor utilities allow
the privileged user to view Sessions, Systems Statistics, Top SQL, and Long Operations reports. The About
Database report shows detailed information about the database instance and the APEX environment.
Depending on the settings the Instance Administrator has chosen, these two utilities may not appear in the
list, because they can be turned off.

When an object is dropped, Oracle doesn’t immediately remove the space associated with the table, but
instead renames the table and places it and its associated storage in the Recycle Bin. The Recycle Bin utility
allows you to view and potentially recover objects that have been dropped from the schemas associated with
a workspace. You may also purge the Recycle Bin, allowing the space to be reclaimed by the Oracle database
for use somewhere else.

Packaged Apps
The Packaged Apps section is where you will install and managed the applications that are bundled with the
APEX distribution. The main page, shown in Figure 2-22, shows the Packaged Apps home page. From here
you can see which applications are installed and can navigate to the three subsections.

Figure 2-22. The Packaged Apps home page

Chapter 2 ■ a Developer’s overview

33

Packaged App Gallery
The Packaged App Gallery presents all of the applications that come bundled with the APEX distribution.
There are 35 separate packaged apps that can belong to several different categories, including Software
Development, Tracking, Team Productivity, Marketing, Knowledge Management, IT Management, Project
Management, Sample Application and Sample Websheet.

Clicking on the icon of an application takes you to a detailed information page for that application.
Here, you’ll be able to see a screenshot of the application, read its full description, and see version
information, as seen in Figure 2-23.

Figure 2-23. The Checklist Manager Packaged Apps information page

Chapter 2 ■ a Developer’s overview

34

Clicking the Install Application button will step you through the process of installing the selected
application in your current workspace. A pop-up installation wizard will present you with a choice of
authentication method, which normally defaults to Application Express Accounts. Clicking the final Install
Application button in the wizard will install the application and any of its supporting objects, including any
required database objects. Once the installation is complete, you will be taken back to the Application’s
Information page where, as shown in Figure 2-24, you will see the application has been successfully installed
and you will be given the options to manage and run the application.

There are a few things that you should know about Packaged Applications:

• Any application that has “Sample” in the name is there to demonstrate functionality
available in APEX and therefore will be installed in an unlocked state by default. This
means that developers will be able to edit the application and see how the APEX
team developed the app.

• Applications that do not have “Sample” in the name are provided as production
ready and will be installed in a locked state that does not allow any editing until the
app is specifically unlocked. This can be done via the Manage button, as shown in
Figure 2-24. Any of these applications that are installed and remain locked are fully
supported by Oracle in a production environment. These locked applications can
also be upgraded to more current versions that may come with future versions of
APEX. The moment you unlock them, all support from Oracle ceases, upgradeability
expires, and there is no way to re-lock the application.

• All Packaged Applications are installed into the workspace’s default “parse as”
schema. Currently, there is no direct way to install them in a secondary “parse as”
schema without first unlocking and exporting the application, thereby voiding any
support.

Even though the Sample apps were written as learning aids, there is a lot to be learned from many of the
production-ready applications as well. I heartily suggest your first act after finishing this book is take a look
at the inner workings of some of the Packaged Applications.

Packaged App Dashboard
As shown in Figure 2-25, the dashboard page presents an overview of the utilization of Packaged
Applications in the current workspace. You’re presented with the total number of available apps, the number
installed, and whether there are any applications that can be upgraded. You can also see who has installed
the apps and how frequently they are used.

Figure 2-24. See that the Checklist Manager App has been successfully installed

Chapter 2 ■ a Developer’s overview

35

Packaged App Administration
The Packaged App Administration page provides a list of administration tasks specifically related to
Packaged Applications installed in the current workspace. If you are logged in as a developer, you’ll only see
options relating to managing Interactive Report settings and Activity reports. However, when logged in as a
workspace administrator, you’ll see a section called Manage Services that shows a small subsection of what is
available to you in the full Administration section.

Administration and Team Development
The last two functional areas of the UI, Administration and Team Development, are complex enough to truly
deserve their own chapters. Therefore, we refer you to the chapters that cover these areas in depth. Chapter
10 covers deploying applications, Chapter 14 is about managing workspaces, and Chapter 15 goes over Team
Development.

You will dip into administrative tasks throughout this book, so if you want to have a full understanding
of administration before you start, you should take a detour and read these chapters now to get a good
foundation. However, if you’re prepared to learn on the fly, go to the next chapter, where you start the real
programming.

Figure 2-25. The Packaged Apps Dashboard

http://dx.doi.org/10.1007/978-1-4842-0466-5_10
http://dx.doi.org/10.1007/978-1-4842-0466-5_14
http://dx.doi.org/10.1007/978-1-4842-0466-5_15

Chapter 2 ■ a Developer’s overview

36

Summary
The architecture of APEX may seem a bit daunting at first, but once you actually start working with it, things
will begin to fall into place, and you’ll understand more and more about how everything fits together. If
you take away only one thing from this chapter, let it be that a workspace is essentially your development
sandbox. Everything you do happens in the context of a workspace. Everything else—from a development
standpoint—is much like any other development environment. Are you building a new application? Then it
needs to be created in a workspace. Do you need access to a schema to build that app? Then it needs to be
assigned to your workspace. You get the picture. Now, on to the fun!

37

Chapter 3

Identifying the Problem and
Designing the Solution

Every computer system is (or at least should be) the result of solving some type of problem. Although
“Hello World” apps are great, I firmly believe that the best way to learn any technology is to apply it to a real
problem and see how things actually work.

I adhere to that principle throughout this book. This chapter will discuss a very common problem in
most organizations that can be solved technically. You will also look at some of the elements you need to
consider when designing web-based systems in general and with APEX specifically.

Identifying System Requirements
Almost every company, no matter the size, will at some point need to implement some sort of help desk.
Whether it’s an internal one to track employee questions and problems or an external one to track client
issues with commercial software or hardware, the basics of a help-desk system are fairly standard.

Most help-desk systems are driven by the notion of a trouble ticket or simply a ticket. This term is left
over from the days before computers: most problems were reported over the phone, and troubleshooters
used a physical paper ticket to log a call. The information contained on that paper ticket included a
description of the problem, the name of the person having the problem, when the problem was logged, and
so on. Then, throughout the process of troubleshooting and, hopefully, solving the problem, the engineers
wrote down each step of the process and included any documentation of the problem they gathered along
the way. Today, it would be very surprising to see a help-desk system that wasn’t computerized, even if it’s
only a spreadsheet of issues with notes and statuses.

In this chapter, you will attack the help-desk system with APEX. Before you dive in, you need to clearly
understand the problems you’re trying to solve. If nothing else, you need to review the current system.

Never a Clean Slate
Almost no computer system written today starts from scratch. There is almost always something in place
already, even if it’s just some loose guidelines or ideas.

For this example, let’s say your company has a very basic system in place, but it’s no longer meeting
the needs of your growing user community. Your goal is to create a new system that will make the logging of
issues and their solutions much easier for everyone involved; however, to do that, you must understand the
needs of the users and the functionality of the system that is currently in place.

Chapter 3 ■ IdentIfyIng the problem and desIgnIng the solutIon

38

A Broken System
In general, the users of help-desk systems can be categorized into two groups: people who log problems
(end users) and people who help solve the problems (technicians). Depending on which user community
you fall into, it’s likely you have different needs, but, overall, the system should help the end users and the
technicians communicate with each other about the problem or issue.

The first step is to understand how your help desk is being managed today and why it’s not working.
Speaking to both the technicians and the end users can provide a huge amount of information, but the
challenge is that this information usually comes in the form of complaints about the current system.

Quizzing the end users reveals that their main complaint is that they never know the status of the
problems they’ve logged. They can go days, sometimes weeks, without communication from the technicians,
and in the eyes of the users, no communication means no one is working on their problem. Another user
complaint is that the help-desk technicians often don’t know how to contact them to ask further questions
or communicate progress.

On the other end of the issue, the technicians are overloaded. Ticket information is kept in an Excel
spreadsheet. Originally, the help desk was only one person, but now there are several technicians working
independently. While performing their daily duties, each needs to update the spreadsheet with information
regarding the tickets assigned to them. The increasing number of people accessing a single spreadsheet
causes problems, because only one person can open and update the spreadsheet at any given time. The
technicians are also tired of constantly being called by users wanting an update on the status of their issues.

It’s obvious that the system is broken. Neither the users nor the technicians are happy about the
situation. It’s your job to take the information you’ve gleaned from these conversations and design
something that will address the needs of both user communities.

How Do You Fix Things?
With the information you’ve gathered so far, you can now define some loose requirements and break them
down by user type to give you a much clearer understanding of what each community needs. Then, from those
requirements, you can begin to think about the database design that you’ll need to create in support of them.

Defining the Requirements
You can look at requirements from two perspectives. End users have one set of requirements and technicians
another. Some requirements overlap between the two groups. Others are unique to one group or the other.

End users should be able to

• create a new ticket outlining their problem

• see the status and progress of tickets

Technicians should be able to

• easily identify and view new tickets

• easily identify which tickets are directly assigned to them

• search existing tickets

• create new tickets on behalf of an end user

• assign tickets to other technicians

• add details (comments, information, and attachments) to tickets

• update the status of a ticket

Chapter 3 ■ IdentIfyIng the problem and desIgnIng the solutIon

39

Although you could go a lot further, these requirements form the basis of a pretty complete help-desk
system. You can always add functionality to it later when you have a better understanding of what else the
users and the company might need.

Extrapolating to a Database Design
Having stated the requirements, you can begin to extrapolate the database objects you need to create to
store the data. If you’re new to database design, here’s a quick trick to help you identify the entities for which
you need to build tables: go back through your requirements and look for concrete nouns that represent
the highest-level objects you need to track. As you find these nouns, try to identify if they’re actually at the
highest level or if they’re merely attributes of something bigger.

If you follow the described process with your brief requirement specification, the nouns USER and
TICKET jump out as being the two main things you want to track. It’s tempting to split users into two
different sets—technicians and end users—but the type of user is merely an attribute of a user.

An object that is a little harder to identify is TICKET DETAIL. It’s completely valid to think that this
would merely be an attribute of a TICKET; however, the clue comes in the fact that you can’t concretely
identify how many TICKET DETAIL entries there will be for any given TICKET. The fact that the number is
unknown indicates that you should create a table that is a child of the TICKET entity called TICKET DETAIL.
This way, you can enter as many detail records as you need.

So, you’ve identified three major entities: USERs, TICKETs, and TICKET DETAILs. You now need to think
about the attributes of each of these entities and what type of data they will hold. Searching back through
the statement of requirements, talking to the technicians about what they track today, and thinking about
what types of things you’d want to be able to track during the process of solving a problem, you can identify a
number of attributes about your objects. Tables 3-1 through 3-3 show these attributes.

Table 3-1. USER Attributes

Attribute Name Type of Data Comment

User ID Number A unique ID for each user

User Name Text A login ID for each user

Password Text The password used to log in to the system

Table 3-2. TICKET Attributes

Attribute Name Type of Data Comment

Ticket ID Number A unique way to identify the ticket

Subject Text A brief one-line statement of the problem

Descr Text A detailed description of the problem

Status Text The status of the ticket during processing (OPEN, PENDING,
CLOSED, and so on)

Created By Text The user who logged the ticket

Created On Date The date the user created the ticket

Closed On Date The date the ticket was closed

Assigned To Text The technician who is assigned to work on the ticket

Chapter 3 ■ IdentIfyIng the problem and desIgnIng the solutIon

40

Although it’s good to try to be as detailed as possible as early as you can, you don’t have to be perfect
here. You can always go back and alter or expand the data you wish to capture as you identify other
potential attributes.

System Design with APEX in Mind
Because APEX not only resides in, but is also built on, the Oracle database, you would think that designing
database objects for APEX would be the same as designing for any other system that uses Oracle as a data
store—and in some aspects you would be right. However, there are definitely some things you need to
understand when designing for an APEX system that will make your life much easier.

Most of what you do with APEX, at least initially, uses a series of wizards. If the database objects are
designed with APEX in mind, the wizards will do far more work for you; therefore, you’ll need to do far less
fine tuning manually. The following sections will discuss the most important design considerations and how
they affect what the wizards do for you.

Table Definition and User-Interface Defaults
One such area you will see in more detail later is that of user-interface defaults (UI Defaults). It’s important
to know that when you use UI Defaults, certain table attributes are translated into default settings used
across APEX. Here are some of the more far-reaching things you can do at the table level to help make
UI Defaults more useful:

• Placing comments on a table column seeds that item’s UI Default help text with the
text of the comment.

• Marking a column as NOT NULL at the database level triggers a Required flag to be set
in the UI Defaults.

• Date and Timestamp data types are set up to display as Date Pickers on input forms.

• The order in which the columns appear in the table is the default order in which the
UI Defaults will set them to display on a form or report.

• Defining a column as a BLOB sets the form-level UI Defaults to use APEX’s declarative
BLOB functionality.

You will set up and modify UI Defaults in a later chapter so you can see for yourself how design
decisions affect the way they are set up.

Table 3-3. TICKET DETAIL Attributes

Attribute Name Type of Data Comment

Ticket Details ID Number A unique way to identify this detail entry

Ticket ID Number Which ticket this detail is linked to

Details Text A text description of any details entered by the technician

Created By Text The user who logged the ticket

Created On Date The date the user created the ticket

Chapter 3 ■ IdentIfyIng the problem and desIgnIng the solutIon

41

APEX and Primary Keys
APEX is set up to make the best use of sequence-based surrogate primary keys of no more than two columns.
Although you can still use APEX on table structures that use multicolumn natural keys, it’s far easier and you
get much more out of the box if you give APEX what it likes.

I have worked with many systems over the years that implemented multicolumn natural keys, and
I’ve successfully implemented APEX systems on top of these types of data structures. However, I ended up
hand coding the logic that APEX would have provided for free had the structures used one- or two-column
surrogate keys.

In APEX 4, the ability to use ROWIDs in place of primary keys was introduced to help solve the problem
of multicolumn primary keys. This feature provides a way to bypass the perceived limitation of APEX’s two-
column primary-key limit by using the ROWID as the primary key.

Although using ROWIDs in this manner is technically and syntactically correct, when building an APEX
application from scratch, it’s still considered a best practice to use single-column surrogate primary keys
based on a database sequence (Oracle 11g and below) and assigned by either database triggers or an identity
column (Oracle 12c).

If you take the example of the TICKET table, the ID for a ticket is an arbitrary piece of data used only to
uniquely identify one ticket from another. Therefore, it easily fits into the realm of a surrogate primary key.
Even if the spreadsheet that the help-desk technicians currently use has IDs assigned to the tickets, you can
load those values and start your sequence counting at a point above the highest current TICKET ID. The
same is true for TICKET DETAILS. Even in the USER table, where you have a unique, single-column natural
key (the User Name), it behooves you to implement a surrogate key so as to be able to take advantage of the
built-in APEX code paths.

Business Logic vs. User-Interface Logic
Because it’s primarily written in PL/SQL, APEX takes full advantage of everything that PL/SQL has to offer.
The APEX development team has made thorough use of stored PL/SQL program units for their business
logic, and you can take a very important lesson from them.

Although it’s arguably a valid development method to prototype your business logic by first coding it
as an anonymous PL/SQL block inside of APEX, it’s foolish to leave it there long term. By moving it out into
stored program units, you gain in many different ways.

One very important gain is made in the realm of performance. Anonymous PL/SQL blocks are stored
in the APEX metadata as uncompiled PL/SQL code. Each time they’re required to run, they must first be
extracted from the APEX metadata, parsed, compiled, and then run. This process carries quite an overhead
if the PL/SQL in question is part of a page that gets thousands or even hundreds of thousands of hits a day.
If you move that code into a stored program unit in the database, the retrieval, parse, and compile steps are
all skipped, and the code is run directly.

Another benefit is reusability. If the same logic is used in more than one place, it can simply be called
instead of duplicated in two anonymous blocks. Therefore, any change to the business logic need only
happen in one place. Another reusability benefit might occur if multiple systems (some being non-APEX)
need access to the same business logic. When stored in a PL/SQL program unit, it doesn’t matter whether
the calling system is APEX, .NET, Java, or PHP—they can all use the same logic.

Finally, by moving business-logic code into stored program units, you gain the ability to code, debug,
and test these program units outside of the restrictions of APEX, using your favorite PL/SQL coding tool
instead. However, not all code needs to be moved out into the database. User-interface logic that manages
and manipulates items on the page, such as computations, validations, and processes, is often best kept as
part of the page. Such logic is often so page specific and so small in footprint that the gain from moving it out
to the database isn’t worth the extra management overhead. As a general rule of thumb, logic that controls or
manipulates the UI is best placed in APEX, and logic that implements business rules or controls the data is
best placed in stored program units in the database.

Chapter 3 ■ IdentIfyIng the problem and desIgnIng the solutIon

42

Placement of Database Objects
The Oracle database is very flexible, allowing data from multiple schemas to be granted to and queried
by other schemas, even across database links. The APEX wizards have been coded to work best when the
database objects reside in a “parse as” schema assigned directly to the workspace.

The APEX wizards make heavy use of database metadata for the objects in the “parse as” schema.
If you’re trying to create applications against synonyms from another schema or across a database link to
another database, in many cases the wizards won’t be functional, because the metadata for these objects is
unavailable. Some features won’t work at all, such as the management of BLOB data across database links.

In general, reports are much easier to deal with when it comes to disparate data, because you can
supply a working query and create a report. Forms, however, become much more difficult, because the
insert, update, and delete logic must be coded manually instead of relying on the APEX-supplied automated
DML processes.

Although it’s not always possible, the best practice is to create the underlying database objects in the
“parse as” schema for the application. This is how you will architect your help-desk system.

Translating Theory to Practice
Now that you have a reasonable understanding of the things you need to think about when designing the
database objects for your system, you can translate your text-based tables into a real schema definition.
Although it’s very easy to take the previously described objects and attributes straight to SQL Workshop
and start entering their definitions, it’s usually a good idea to go through the steps of creating an entity-
relationship diagram (ERD). Often, the action of doing this can bring other design considerations to light.

There are dozens of ways to draw ERDs, from pen and paper to high-end database-design tools.
However, I tend to take the middle ground and use Oracle’s SQL Developer Data Modeler, a robust and free
tool from Oracle.

Figure 3-1 shows the results of using the Data Modeler to create the ERD from the information in the
initial definitions.

Figure 3-1. First draft of database design

Chapter 3 ■ IdentIfyIng the problem and desIgnIng the solutIon

43

The diagram shows each table having a surrogate primary key that uniquely identifies the records.
As discussed in the previous section, this allows the APEX wizards to work more seamlessly and generate
more-complete objects.

There is a foreign key in place between TICKETS and USERS to identify the person to whom the ticket is
currently assigned. In addition, a unique constraint is placed on the USER_NAME column of the USERS table to
make sure someone doesn’t accidentally create two users with the same USER_NAME.

Although this isn’t likely to be the final version of the data model, it’s probably complete enough for a
start. Using your ERD tool, you could go ahead and generate the database-object-creation scripts and then
upload and run them through APEX SQL Workshop’s SQL Scripts interface. However, because your data
model is so small, in the next chapter you will use the Object Browser tool to create the objects from scratch.

Summary
Identifying the problems your APEX application is supposed to solve is only half the battle. Good database
design—and designing specifically with APEX in mind—is the key to creating a successful APEX application.
Taking the time to make sure you have a solid foundation means you can take full advantage of everything
APEX gives you so that there is less work to do later.

45

Chapter 4

SQL Workshop

Now that you have a graphical representation of what your underlying tables should look like, in the form of
an entity-relationship diagram (ERD), it’s time to dig in and start creating the objects. As mentioned before,
you could use your ERD tool to generate the scripts, but to get used to using the SQL Workshop, here you’ll
create these objects from scratch.

■ Note For this and many of the following chapters, you need to download the code that accompanies the book.
If you haven’t already done so, download the code .zip file from this book’s home page at www.apress.com.
Then unzip it to a directory from which you can retrieve the files easily.

Creating Objects with the Object Browser
SQL Workshop’s Object Browser is somewhat misnamed, because it not only allows you to view database
objects, but also lets you create and edit them. For now, you’ll skip the USERS table; you will come back to
it later in the book. Right now, you’ll focus on the TICKETS and TICKET_DETAILS tables. From this point
forward, you’ll follow step-by-step instructions interspersed with figures and discussions about what you’re
trying to achieve and why you’re doing it the way you are. Let’s get started:

1. Log in to your APEX workspace. You’re presented with the workspace’s Home
page, which, unless you’ve been doing other work in this workspace, probably
looks a little sparse.

2. Using the tabbed navigation bar across the top of the Home page, pull down the
SQL Workshop submenu by clicking the arrow on the right side of the tab
(see Figure 4-1).

http://www.apress.com/

ChapTer 4 ■ SQL WorkShop

46

3. Click the Object Browser option.

4. In the Object Browser, click the “+” icon (which stands for Create) button in the
upper-right corner and select Table from the drop-down menu.

The Create Table Wizard opens. The first screen (Figure 4-2) allows you to name the table and enter the
details for each of the table’s columns. Using the two arrows in the Move column, you can move the columns
into whatever order you like. This affects the order in which they’re defined and stored in the table. If you
run out of empty rows in which to enter columns, you can click the Add Column button to add a new, empty
column-definition row to the form.

Figure 4-1. Navigate to the Object Browser

Figure 4-2. Defining the table and its columns

ChapTer 4 ■ SQL WorkShop

47

5. Enter the details for the TICKETS table as indicated in the ERD from the end of
Chapter 3 and in Figure 4-2. Make sure you include the appropriate checks in the
Not Null column of the form. Then click Next.

The next step in the wizard (Figure 4-3) lets you choose how you would like the primary key to be
populated and which column to use as the primary key. The four options for primary key are fairly
self-explanatory, but the two in the middle are probably the most common. You’re starting from scratch and
therefore don’t have any existing sequences defined in your database. By selecting “Populate from a new
sequence,” you tell APEX to create a sequence for you and to create a database trigger on the table that will
populate the selected primary-key column with the next value from the sequence, unless the field already
has a value. You’re given the chance to name the sequence in this step as well. In this instance, you’ll use the
default name given.

Figure 4-3. Defining the table’s primary key

6. Select the Populated from a new sequence radio button. After the screen
changes, select TICKET_ID (NUMBER) for the Primary Key. Leave the
Sequence Name set to its default and click Next.

7. You’re not going to create any foreign keys in this table just yet, so leave the
defaults and click Next.

http://dx.doi.org/10.1007/978-1-4842-0466-5_3

ChapTer 4 ■ SQL WorkShop

48

The Constraints screen in Figure 4-4 allows you to add either Unique or Check constraints to the table
definition. You add a constraint by defining the constraint in the Add Constraints region and clicking the
Add button to add it to the list. Below the Add Constraints region are two Help regions. Clicking the arrow to
the left of the region title expands the help and shows the columns you defined in the table and examples of
how to code various check constraints.

Figure 4-4. The constraints definition step

ChapTer 4 ■ SQL WorkShop

49

When you click the Add button, the definition of the constraint is added to the list of constraints at
the top of the page. You can define as many constraints on a given table as is necessary. Once you’re done,
simply continue with the wizard.

8. You’re not going to create any Unique or Check constraints here, so stick with the
defaults and click Next.

The final step of the Create Table Wizard gives you the chance to confirm your request and, if desired,
review the code that will be executed. If you need to make changes to the table definition, you can use the
buttons at the bottom of the region to navigate back through the wizard steps. To view the code, click the
arrow to the left of the SQL label to expand the region, as shown in Figure 4-5.

Figure 4-5. Review the Create Table Wizard’s SQL

9. Review the text in the SQL region presented by the Create Table Wizard. Click
Create Table to complete the wizard.

Once you’ve successfully completed the wizard, you’re taken back to the Object Browser, and
the definition of the TICKETS table is displayed. Take a moment to examine the definition of the table.
You should see all the columns that you defined listed. If you click the Constraints tab at the top of the
definition region, you will see a number of different constraints, including the primary-key constraint
on TICKET_ID.

In the upper-left corner of the Object Browser is a select list that defines the object type being browsed.
Use this select list to choose Sequences. You see that APEX created a sequence called TICKETS_SEQ that will
be used to fill the TICKET_ID.

ChapTer 4 ■ SQL WorkShop

50

Once again, use the Object Type select list and choose Triggers. You will see a trigger named BI_TICKETS
(BI stands for “before insert”). Selecting the BI_TICKETS trigger on the left-hand side and then clicking the
Code tab above the trigger details will show the code for the trigger that is using the TICKETS_SEQ sequence
to fill the TICKET_ID if it is null. You should see code similar to the following:

create or replace trigger "BI_TICKETS"
 before insert on "TICKETS"
 for each row
begin
 if :NEW."TICKET_ID" is null then
 select "TICKETS_SEQ".nextval into :NEW."TICKET_ID" from sys.dual;
 end if;
end;

Now that you have the TICKETS table defined, let’s go back and create the TICKET_DETAILS table.
This time, you’ll create a foreign key to the TICKETS table, as a CASCADE DELETE. This means that if you delete
a ticket, the ticket details will automatically be deleted as well.

10. Start the Create Table Wizard using the Create (+) button.

11. Enter the table name and column definitions based on the ERD and Figure 4-6,
and click Next. Again, make sure you check the appropriate Not Null checkboxes.

Figure 4-6. Defining the TICKET_DETAILS table

ChapTer 4 ■ SQL WorkShop

51

The next set of steps is purposely a bit more vague than the previous ones. You should be used to using
the Create Table Wizard by now, but if you need a refresher, just look at the previous steps.

12. Choose Populate from a new sequence for the primary key, select
TICKET_DETAILS_ID(NUMBER) as the Primary Key column, and click Next.

13. Add a foreign key between the TICKET_ID in the TICKET_DETAILS table and the
TICKET_ID in the TICKETS table. Make sure the Delete action is set to Cascade
Delete. Your screen should look similar to that in Figure 4-7. Additionally, make
sure you tab out of the References Table field in order to cause APEX to display
the shuttle control that allows you to choose the referenced columns.

Figure 4-7. Defining a cascade-delete foreign key for TICKET_ID

14. Click the Add button to add the new foreign-key constraint.

15. Click Next (see Figure 4-8).

Figure 4-8. Foreign key as defined in the table wizard

ChapTer 4 ■ SQL WorkShop

52

16. No constraints are required for this table. Click Next.

17. Review the SQL and click Create Table to complete the wizard.

Loading Data with the Data Workshop Utility
Now that you have your two base tables defined, you can begin working to migrate the old data into your
shiny new data structure. You can use SQL Workshop’s Data Workshop utility to load and unload data from
an Oracle schema in a number of ways, as shown in Figure 4-9. The Data Load option allows you to choose
Text Data, XML Data, and Spreadsheet Data.

Figure 4-9. Data Load and Unload methods provided by the Data Workshop utility

Although three separate options are presented, the Text Data and Spreadsheet Data options actually use
the same Data Load Wizard. There is little or no discernible difference in the actions of the wizard regardless
of which option you select.

The third option (XML Data) allows you to load data that has been exported in Oracle’s proprietary XML
Data Transport format. The format looks like this:

<ROWSET>
<ROW>
 <USER_ID>2</USER_ID>
 <USER_NAME>DOUG</USER_NAME>
 <PASSWORD>A69856770A9AB9CBB0479573FCB3E2A5</PASSWORD>
 </ROW>
 <ROW>
 <USER_ID>3</USER_ID>
 <USER_NAME>DAVID</USER_NAME>
 <PASSWORD>E2E89134B8AC6E1FFC14139A6FB2C10B</PASSWORD>
 </ROW>
</ROWSET>

In your imaginary company, the help-desk technicians have been using Microsoft Excel to track
tickets, so you’re going to load the data using the Spreadsheet Data option. A quick glance at the
spreadsheet your technicians use shows you that they have two separate sheets in the Excel workbook:
TICKETS and TICKET_DETAILS.

Knowing that you’re using preexisting tables that already have primary and foreign keys in place, you
need to be careful about how you load the data. TICKET_DETAILS depend on TICKETS for their parentage, so
you need to load the TICKETS data first. Your spreadsheet should look like that in Figure 4-10.

ChapTer 4 ■ SQL WorkShop

53

Once you have the TICKETS data in the clipboard, you can switch back to APEX and use the Data
Load Wizard to insert this data into your TICKETS table. Here are the steps to follow to load data from the
spreadsheet into the database:

1. Locate the helpdesk_spreadsheet.xls file where you downloaded the
supporting files for this book, and open it with Microsoft Excel. Navigate to the
TICKETS tab. Notice that you have a row for each ticket and a header row that
contains the column headings for each of the columns.

2. Select all the data, including the column headings, and copy it to the clipboard.
Be cautious not to accidentally select any rows that don’t have data in them,
because that may cause phantom rows or errors in the Data Load Wizard.

3. Switch back to your web browser, and, using the pull-down menu on the SQL
Workshop tab, select Data Workshop under the Utilities section.

4. In the Data Load region, click Spreadsheet Data. You should see the Load Data
dialog shown in Figure 4-11.

Figure 4-10. Spreadsheet data from the TICKETS tab of your Excel workbook

Figure 4-11. Preparing to copy and paste the spreadsheet data and load it into the existing TICKETS table

ChapTer 4 ■ SQL WorkShop

54

5. In the wizard, select Existing table for Load To and Copy and paste for Load
From, and click Next.

6. Select your “parse as” schema from the Table Owner select list. This is the same
schema in which you created your tables in the Object Browser.

7. Select TICKETS for the Table Name, as shown in Figure 4-12, and click Next.
This is the table into which you’ll load the TICKETS data.

Figure 4-12. Enter the name of the table into which you’re going to load the data

8. Paste the data that you copied to the clipboard in step 2 into the Data text area.
Change the Separator from a comma to \t, which stands for Tab Delimited.
Now ensure that the First row contains column names box is checked, as
shown in Figure 4-13. Click Next. (You may have to scroll within the dialog to
see all the options.)

ChapTer 4 ■ SQL WorkShop

55

Figure 4-13. Pasting the spreadsheet data into the Data text box

When you click Next, APEX parses the data you’ve pasted in and does its best to match the column
names in the first row of the spreadsheet data to the column names of the table into which you’re loading
the data. On the next screen, you’re presented with column mapping so you can check its accuracy and, if
necessary, make alterations and corrections.

APEX is very good about matching column names as defined in the spreadsheet with those that have
the same name in the table. However, if the names differ, it doesn’t try to guess but instead leaves the
mapping to you.

If you scroll to the right, you should see that APEX has matched all the column names from the
spreadsheet correctly to the table columns. If, for some reason, the mappings aren’t right, you can adjust
them using the drop-downs shown in Figure 4-14.

ChapTer 4 ■ SQL WorkShop

56

9. When you’re sure all the mappings are correct, click the Load Data button to
load the data into the TICKETS table.

After the data is loaded, you’re presented the Spreadsheet Repository screen shown in Figure 4-15. That
screen shows that twenty rows were loaded into the database and zero errors occurred during loading.

Figure 4-14. Manually mapping the data columns to the table

Figure 4-15. Data has been loaded into the TICKETS table

If you navigate to the Object Browser, select the TICKETS table, and look at the data in that table, you can
see that the records that were in your spreadsheet have been loaded into the database. To finish the job, you
need to load the data for TICKET_DETAILS. Here’s what to do:

10. Navigate to the Data Workshop, click the Spreadsheet Data link in the Data Load
region, and click Next.

11. In the wizard, select Existing Table for Load To and Copy and paste for Load
From, and click Next.

12. Select your “parse as” schema from the Table Owner select list. This is the same
schema in which you created your tables in the Object Browser.

ChapTer 4 ■ SQL WorkShop

57

13. Select TICKET_DETAILS for the Table Name, and click Next.

14. In Microsoft Excel, navigate to the TICKET_DETAILS tab and copy all the data,
including the column headings, in that spreadsheet to the clipboard.

15. In your browser, paste the data you copied to the clipboard into the Data text
area, change the Separator to \t, and ensure that First row contains column
names is checked, and click Next.

16. Review the mappings made by APEX in the Define Column Mapping region. It
should have mapped everything correctly. Click Load Data to complete the data
load. The summary should say that twenty-two records were loaded into the
TICKET_DETAILS table with zero errors.

You now have both of the main tables created and loaded with the legacy data. This alone is enough to
start developing an application, but you’re not quite ready to begin yet.

Creating a Lookup Table
Have a look at the definitions and data of the tables you just created. They’re basically mirror images of the
spreadsheet tabs the technicians were using before. If you examine the data closely, you will notice that
there are still some areas where the data isn’t quite normalized as well as it could be.

For instance, in the TICKETS table, the STATUS column has only three values—OPEN, CLOSED, and
PENDING—which repeat over and over. The data values in this column indicate that it’s a perfect candidate
for creating a lookup table. Although it’s tempting to create the table manually with the Create Table
Wizard and then manually migrate the data, APEX can create a lookup table—complete with its own
sequence, trigger, and foreign key—and modify the original table so it points to the new lookup table, all
without you writing a line of code. Here’s how:

1. Navigate to the Object Browser and select the TICKETS table in the Object List
on the left side of the screen. You should see results similar to those shown
in Figure 4-16.

ChapTer 4 ■ SQL WorkShop

58

2. Make sure the Table tab is selected.

3. Below the tab bar is a set of button-like links. Click the Create Lookup Table
button, as shown by the mouse arrow in Figure 4-16; it starts the Create Lookup
Table Wizard.

The first step of the Create Lookup Table Wizard (Figure 4-17) gives you the option to show either
only VARCHAR column types or all column types. It defaults to VARCHAR because that’s most likely to be the
candidate for lookup tables. Looking at the columns presented in the wizard, you will see that one of the
VARCHAR columns is your STATUS column.

Figure 4-16. Clicking the Create Lookup Table button starts the Create Lookup Table Wizard

ChapTer 4 ■ SQL WorkShop

59

Figure 4-17. Selecting the STATUS column as the source of your lookup table

4. Select STATUS as the column from which you want to create the lookup table,
and click Next.

5. The next step allows you to name your lookup table and the sequence that
is related to it. APEX has chosen a reasonable name for the new table and
sequence, so take the defaults and click Next.

6. The final screen of the wizard (Figure 4-18) provides you with information about
the choices made and the action that is about to be performed. It’s easy to miss the
SQL syntax link just below the wizard region. Click the SQL link to show the SQL.

Figure 4-18. Clicking the SQL syntax link shows the SQL about to be executed

ChapTer 4 ■ SQL WorkShop

60

Examining the SQL shows the steps that will be taken to create the new lookup table, associated
sequence, and trigger; insert the data into the table; and update the data in the originating table so that it
references your new lookup table. That’s quite a lot of work saved on your part.

7. Click Create Lookup Table to complete the wizard. You’re taken back to
the Object Browser. The STATUS_LOOKUP table is highlighted and its details
are shown.

Use the Object Browser to examine the objects that the wizard created.

Loading and Running SQL Scripts
The SQL Scripts tool of SQL Workshop allows you to create, upload, manage, and run SQL scripts. These
scripts are similar to SQL*PLUS scripts in many ways. However, if you use scripts written for SQL*PLUS,
APEX ignores any SQL*PLUS-specific syntax.

Once a script is created or loaded, it’s moved into the script repository, where it remains until you
decide to remove it. From the script repository, you can decide to edit or run the script. When you run a
script, APEX stores the results for you to view later. For example, you can come back to review the results for
possible error messages.

You’re now going to load and run a script that will modify the underlying data just a bit. Here’s why: In
the real world, the spreadsheet you received from the help-desk team would have current dates and data in
it; however, the ticket dates in the spreadsheet that is downloaded with the .zip file accompanying this book
very likely aren’t current. This would cause you to have to search back in history for the tickets if you were
searching by date. This script will update these dates so they’re recent.

Another thing you need to take into consideration is that you loaded a bunch of data into your tables that
already had IDs assigned to them. Because the IDs were loaded with the data, you didn’t use your database
sequences. Therefore, your sequences are out of synch with the data. You need to drop and re-create your
sequences so the next sequence number is greater than the largest ID used in the associated table.

You’re also going to alter the Before Insert trigger that was automatically created on the TICKETS table so
that it automatically fills in the CREATED_ON column. You’ll also create a couple of database views that will be
used later to retrieve data formatted for some of the specific charts and calendars you’re going to create.

Finally, you’ll create a function that, when passed a status name such as OPEN, passes back the ID for
that status. This function is used in a number of places, because you can’t guarantee you know the ID value
of a given status. Therefore, this function is the only safe way to get the associated ID for a given status.

When you’re in any of the SQL Workshop tools, you can use the pull-down menu of the SQL Workshop
tab as a quick way to navigate to each of the other tools. Figure 4-19 shows this menu and highlights the SQL
Scripts option.

ChapTer 4 ■ SQL WorkShop

61

Here’s what to do to run the script that will update your schema objects appropriately:

1. Navigate to the SQL Scripts tool using SQL Workshop menu.

2. Click the Upload button in the upper-right section of the screen.

3. Click Browse or Choose File buttons to search for the SQL file to upload.

4. In the pop-up file-finder window, locate and select the ch4_schema_changes.sql
file and click Upload. You don’t need to give the script a name; it defaults to the
name of the script as it appears at the OS level.

Once the file has been uploaded, you’re presented with a SQL Scripts report showing the script that
you just uploaded. From this point, you can either edit or run the script. If you want to see what the script
contains, feel free to edit it. You can run the script from the edit screen as well.

5. Run the script by clicking either the Run button (if you’re editing the script) or
the Run icon (if you’re still viewing the SQL Scripts report).

6. As shown in Figure 4-20, you’re asked to make a selection between Run in
Background and Run Now. Select Run Now.

Figure 4-19. Using the SQL Workshop menu to navigate to the underlying tools

ChapTer 4 ■ SQL WorkShop

62

The script is run, and you’re immediately taken to the Manage Script Results page. You’ll most likely
see that your script status is COMPLETED.

7. Click the View Results icon at the far-right end of the report row to see the results
of the script. Figure 4-21 shows where to click.

Figure 4-20. Choose whether to Run in Background or Run Now

Figure 4-21. Click the View Results icon to view the results of running the script

The View Results page allows you to see what happened when the script was run. The default view
shows an overview by displaying the first 50 or so characters of each statement along with some brief
feedback and the number of rows affected by the statement. Figure 4-22 shows the results from a run of
the script.

ChapTer 4 ■ SQL WorkShop

63

You can, however, get more detailed feedback by changing the report view to Detail. Doing so gives
you far more insight, especially if you have a script that had errors during execution. Figure 4-23 shows a
detailed view.

Figure 4-22. The summary view of the script results

Figure 4-23. The detailed view of the script results

In either view, you can quickly see whether the script encountered any errors by scrolling to the
bottom of the page and looking at the report footer, which is where the report displays the total number of
statements processed, the number of those that were successful, and the number that generated errors.
Figure 4-24 shows the number of statements processed from a run of the script.

Figure 4-24. In the footer of either report is the success summary for the script

ChapTer 4 ■ SQL WorkShop

64

User Interface Defaults
Before you start to write your application, one last thing you can do that will make your life easier along
the way is to create some User Interface (UI) Defaults. This, in my opinion, is one of the most underutilized
features of APEX.

Understanding User Interface Defaults
UI Defaults allow you to customize the default display attributes for tables, views, and their columns. They
can be used to control many properties, including alignment, searchability, display sequence, what type of
item is created for a column, default values, and many more.

For instance, when you’re creating a new form or report via a wizard (which is most of the time), APEX
asks if you wish to use UI Defaults. If you select “Yes” and defaults are available, APEX applies them to the
appropriate regions or items based on the tables or columns for which the attributes are defined. UI Defaults
are divided into two categories: Attribute Dictionary and Table Dictionary.

The Attribute Dictionary allows you to create more-generic UI Defaults based on attribute names.
Consider this a more macro-level definition.

Let’s say you create an attribute-level default for any attribute named PHONE_NUMBER. If a column
named PHONE_NUMBER appeared in a table and didn’t have a Table Dictionary default assigned, the Attribute
Dictionary default would take effect.

Attribute Dictionary definitions can also be assigned synonyms, allowing more than one attribute
name to share the same actual definition. So, for instance, you could create the synonyms PHONE, TELEPHONE,
PHONENUMBER, and so on for the original PHONE_NUMBER definition. If the wizard ran into a column with any of
those names, it would apply the PHONE_NUMBER defaults to the APEX item that is created.

The Table Dictionary allows you to define defaults for a specific table or column, and those defaults are
only applied to APEX regions or items created for those specific items.

Here are some things to note about UI Defaults:

• Table Dictionary defaults always override Attribute Dictionary defaults.

• When an item is created using UI Defaults, no relationship is established with the UI
Default. Therefore, if you later change the definition of the UI Default, the changes
aren’t propagated to previously created items.

• Items created before UI Defaults have been established don’t inherit properties of
the UI Default.

• Developers can choose not to use UI Defaults, and even if they’re used, can override
them after the component is created.

Having said that, UI Defaults do help ensure consistency across your application and make your job
much easier as a developer.

Defining UI Defaults for Tables
UI Defaults can be managed either from SQL Workshop’s Object Browser or from SQL Workshop’s Utilities
page. Here’s what to do:

1. Navigate to SQL Workshop’s UI Defaults page via the drop-down menu on the
SQL Workshop tab and select Utilities; then, choose User Interface Defaults
from the drop-down menu.

ChapTer 4 ■ SQL WorkShop

65

You’re taken to the UI Defaults dashboard, where things likely look pretty sparse. This is because you
haven’t actually created any UI Defaults yet. The first step in creating UI Defaults is to synchronize the Table
Dictionary with the database so it knows what tables are in your schema.

2. Click the Table Dictionary tab along the top of the page, and then click the
Synchronize button on the screen that appears.

This initiates the Synchronization Wizard. This wizard shows you the number of tables with defaults
defined and the number without. In this case, you should have zero objects with defaults and six
objects without.

3. Click the Synchronize Defaults button to begin the synchronization with the
database. This may take a little time.

Once the Table Dictionary is synchronized with the definitions in the database, you’re presented with
the report seen in Figure 4-25, which shows each table that now has base UI Defaults. If you have other
tables in your schema, they also appear in this report.

Figure 4-25. List of objects with UI Defaults defined

Figure 4-26. The table and column UI Defaults overview

You can now view or edit the UI Defaults for each of these tables. Start by viewing the UI Defaults
for the TICKETS table:

4. Click the TICKETS link in the report. You should see the results shown in
Figure 4-26.

ChapTer 4 ■ SQL WorkShop

66

On the page in Figure 4-26 you can see an overview of the UI Defaults for the TICKETS table. In the
upper portion of the report are the table-level definitions, including what the Form and Report regions
based on this table will be called. In the lower portion is a list of the table’s columns, the labels that will be
used, how they will be aligned when used in a report, whether they will be displayed in a report or a form,
whether their REQUIRED attribute will be set in a form, and whether they have any help text.

Next, edit both the table-level and column-level attributes:

5. Click the Edit Table Defaults button in the upper-right portion of the report. This
allows you to edit how Form and Report regions based on this table are named.

6. Enter Manage Tickets for the Form Region Title, leave the Report Region Title
as it is, and click Apply Changes.

Clicking any of the column names takes you to a page that allows you to set UI Defaults for that specific
column. As you peruse the column UI Defaults, notice that several things have been set for you, including
the REQUIRED attribute. When APEX synchronized with the database, it saw that certain fields were marked
as NOT NULL at the database level and translated those constraints into UI Defaults for you.

APEX also makes some decisions based on the column’s data type, such as how to align the column
when it’s displayed in a report. Use the following information to alter the UI Defaults for the indicated
columns by clicking the link in the column name:

Column: SUBJECT

Label: Subject

Help Text: A brief title for the issue.

Column: DESCR

Label: Description

Help Text: Describes the ticket in detail. Please be as complete as you can.

Resizable: YES

Width: 50

Height: 5

Column: STATUS_ID

Label: Status

If you wish, you can go ahead and set the UI Defaults for any of the other columns and/or tables. Just
remember, what you do now will affect what the wizards create for you later, so if something doesn’t look
exactly like what is shown in this book, check what you set for UI Defaults.

Summary
SQL Workshop may not measure up to some of the more popular GUI tools, but it certainly has the power to
do most things you need to do relating to the creation and management of tables and data. You’ve also seen
that SQL Workshop has a few built-in but hidden gems like the Create Lookup Table Wizard. Finally, among
the many useful utilities is the UI Defaults manager, making your job as a developer just a bit easier.

Sure, this chapter hasn’t covered SQL Workshop in its entirety, but you’ve definitely gained a fair amount
of insight as to what it’s capable of. You will use SQL Workshop for a number of other things throughout this
book, but don’t wait. Go poke around in some of the dark nooks and crannies and see what you find!

67

Chapter 5

Applications and Navigation

With some basic data created, you can now create the shell for your application. APEX provides a wizard
for creating applications. Several options are available within the wizard to assist with generating a starting
application. Based on how much prior planning has been done, the result of running the initial application
wizard may vary. You will start this chapter by walking through the steps of the wizard, as I highlight the
most common features.

For the example application, you will create the most basic shell of the application with only one page.
In other scenarios, you could create an initial draft of all your pages. To illustrate the individual wizards for
creating pages, they will be explored in more detail in later chapters.

After the example application has been created, you’ll add shared components to it. Shared
components are items and structures that are common across all the pages in the application. You will
prepare breadcrumbs, lists, and lists of values (LOVs) for use; you will also learn how the Global Page
concept works. By the end of the chapter, you’ll have some basic components for the application and a
starting outline for the remaining pages.

The Create Application Wizard
Applications in APEX are created through application imports, by copying an existing application, or
by running the Create Application wizard. The Create Application wizard is the first step in creating
an application from scratch. This chapter will walk you through the process of creating the Help Desk
application using the Create Application wizard.

To begin, navigate to the Application Builder in APEX. You can do this from the APEX Home page by
clicking either the Application Builder menu item or the Application Builder icon shown in Figure 5-1.
The Application Builder shows a list of the current applications. At the top of the list is a highlighted Create
button, shown in Figure 5-2. Click the button, and the wizard starts.

Figure 5-1. The Application Builder icon on the APEX Home page

Chapter 5 ■ appliCations and navigation

68

You’re presented with four choices for application type: Desktop, Mobile, Websheet, and Packaged
Application. The Application Builder will quickly become very familiar to you when you’re working with
APEX. Because of this, the shortcut menu in Figure 5-3 is also available to assist with quick navigation even
when you’re in other sections of APEX.

Figure 5-2. The Create button

Figure 5-3. The shortcut to creating an application

Sample and Packaged Applications
If this is a new workspace, there may or may not be a sample application that was created automatically
when the workspace was provisioned. The automatic installation of sample applications is a feature setting
that can be configured by the APEX administrator. If a sample application isn’t installed, you can install one
manually by choosing Packaged Application in the first step of the Create Application wizard, as shown in
Figure 5-4.

Chapter 5 ■ appliCations and navigation

69

The Packaged Apps section is where you can install and manage the applications that are bundled with
the APEX distribution. The main page, shown in Figure 5-5, shows the Packaged Apps Home page, available
from APEX’s main navigation menu. From here you can see which applications are installed and can
navigate to the three subsections.

Figure 5-4. Choosing the type of application

Figure 5-5. The Packaged Apps Home page

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ appliCations and navigation

70

Packaged App Gallery
The Packaged App Gallery presents all of the applications that come bundled with the APEX distribution.
There are 35 separate packaged apps that can belong to several different categories, including Software
Development, Tracking, Team Productivity, Marketing, Knowledge Management, IT Management, Project
Management, Sample Application, and Sample Websheet.

Clicking on the icon of an application takes you to a detailed information page for that application.
Here, you’ll be able to see a screenshot of the application, read its full description, and see version
information for the app, as seen in Figure 5-6.

Figure 5-6. The Checklist Manager Packaged Apps information page

Clicking the Install Application button will step you through the process of installing the selected
application in your current workspace. A pop-up installation wizard will present you with a choice of which
authentication method to use; it normally defaults to Application Express Accounts. Clicking the final Install
Application button in the wizard will install the application and any of its supporting objects, including
any required database objects. Once the installation is complete, you’re taken back to the application’s
information page where, as shown in Figure 5-7, you can see the application has been successfully installed,
and you’re given the options to manage and run the application.

Chapter 5 ■ appliCations and navigation

71

There are a few things that you should know about Packaged Applications:

1. Any application that has “Sample” in the name is there to demonstrate
functionality available in APEX and therefore will be installed in an unlocked
state by default. This means that developers will be able to edit the application
and see how the APEX team developed the app.

2. Applications that do not have “Sample” in the name are provided as production
ready and will be installed in a locked state that does not allow any editing until
the app is specifically unlocked. This can be done via the Manage button, as
shown in Figure 5-7. Any of these applications that are installed and remain
locked are fully supported by Oracle in a production environment. These locked
applications can also be upgraded to more current versions that may come with
future versions of APEX. The moment you unlock them, all support from Oracle
ceases, upgradeability expires, and there is no way to relock an application.

3. As of APEX 5.0, all Packaged Applications are installed into the workspace’s
default “parse as” schema. Currently there is no direct way to install them
in a secondary “parse as” schema without first unlocking and exporting the
application, thereby voiding any support.

Even though the sample apps were written as learning aids, there is a lot to be learned from many of
the production-ready applications as well. I heartily suggest your first act after finishing this book is to take a
look at the inner workings of some of the packaged apps.

Packaged App Dashboard
As shown in Figure 5-8, the dashboard page presents an overview of the utilization of Packaged Apps in the
current workspace. You’re presented with the total number of available apps, the number installed, and
whether there are any applications that can be upgraded. You can also see who has installed the apps and
how frequently they are used.

Figure 5-7. See that the Checklist Manager App has been successfully installed

Chapter 5 ■ appliCations and navigation

72

Packaged App Administration
The Packaged App Administration page provides a list of administration tasks specifically related to the
Packaged Applications installed in the current workspace. If you are logged in as a developer, you’ll only see
options relating to managing Interactive Report settings and Activity reports. However, when logged in as a
workspace administrator, you’ll see a section called Manage Services that shows a small subsection of what is
available to you in the full Administration section.

Websheet Applications
This book will cover websheet application features in Chapters 11 and 12. The starting point for creating
a websheet application is the same as for a database application. The primary difference is the creation of
predefined database objects that support websheet applications.

Database Applications from Spreadsheets
When creating desktop applications from the wizard, you’re quickly faced with a question: where is
your data coming from? One of the links listed in Figure 5-4 lets you create an application based on data
from an existing spreadsheet. If you choose this option, the Create Application wizard provides steps for
loading data into a single table, and at the same time creates an application that allows you to manage and
manipulate that data. The application is very simple, using a report and form combination such as that

Figure 5-8. The Packaged Apps dashboard

http://dx.doi.org/10.1007/978-1-4842-0466-5_11
http://dx.doi.org/10.1007/978-1-4842-0466-5_12

Chapter 5 ■ appliCations and navigation

73

shown in Figure 5-9. Creating a database application from a spreadsheet is a fast and easy way to get from
a single-page spreadsheet to a working online application that can be expanded with additional tools and
functionality.

Figure 5-9. The application pages from a spreadsheet application

Applications from Scratch
When you create an application from scratch, the wizard offers many interesting options. You can create
any number of pages, and link pages to different tables of data. Additional steps give advanced options
that, when planned for, are very powerful. Creating an application from scratch is the method used in the
ticketing-application exercise. Here is what to do to begin the creation process:

1. Navigate to the Application Builder, and click the Create button to initiate the
Create Application wizard.

2. Select Desktop as the application type, and click Next.

The following subsections describe the remainder of the creation process in detail. Each subsection
contains one or more subsequent steps in the creation process. Read the descriptions and follow the steps as
described.

Naming the Application
After selecting the Desktop application option, you’re prompted for details of the application, as shown in
Figure 5-10. The Schema select list exists for workspaces that have been granted access to more than one
database schema, and it allows you to choose which schema you want your application to use as its “parse
as” schema. The Name value is what you use to identify the application inside the builder and is used as the
title of the application.

Chapter 5 ■ appliCations and navigation

74

Application IDs must be unique across the entire instance of APEX, so it’s best to leave the ID set to the
number APEX has assigned.

The next options reference the APEX Theme and Theme Style. APEX themes are groupings of templates
that are used to establish the look and feel of pages, reports, buttons, and other graphical components. As
APEX and web standards evolve, so do the premade themes in APEX. Version 5.0 offers a groundbreaking
new theme option called the Universal Theme, as well as includes a number of HTML5/CSS3-compliant
themes and a responsive theme, along with legacy themes, some of which have been around for quite a
long time.

Although APEX currently comes with 27 desktop themes of varying looks, it’s always possible to
customize an existing theme or to create a completely new one. The APEX administrator also has the
ability to create themes that are specific to their instance of APEX. Choosing a theme as part of the Create
Application wizard is an easy way to apply a default theme. As you might expect, you can change your mind
later and apply a different theme. Additional themes can be added, modified, and tested as part of the
shared components of APEX.

Figure 5-11 shows the APEX theme chooser. The select list at the top of the region dictates which themes
to show. Your choices are as follows:

• Standard Themes: Currently, for APEX 5.0 this only shows the Universal Theme.
All other themes within APEX are now considered “legacy themes.”

• Custom Themes: Shows any custom themes that have been installed by the
workspace or instance administrator. By default, there are no custom themes.

• All Themes: Shows all available themes across all the previous sets, including the
26 legacy themes.

Figure 5-10. Entering the application properties

Chapter 5 ■ appliCations and navigation

75

The Theme Style option is a subselection of the chosen theme and will present the styles available
under that theme. Currently, only the Universal Theme has related theme styles.

Having reviewed the themes, continue the creation process by choosing the Universal Theme for your
example application. Follow these steps:

3. Enter Help Desk for the Name, making sure your schema is set.

4. Select Universal Theme (42) from the Theme select list, and then choose Vita as
the Theme Style for your application.

5. Click Next.

Laying Out Pages
The next step in the wizard is to decide which pages you need for your application. The wizard requires
at least one page to be created, but Figure 5-12 shows that you have the option to create as many pages as
you like.

Figure 5-11. Theme selection

Chapter 5 ■ appliCations and navigation

76

The Add Page Button at the bottom of this page invokes a pop-up wizard that allows you to define pages
of varying types. Each page type calls for different information to be provided. For instance, adding a report
page prompts you to select either a table name or a query on which to base the report. Choosing a chart
requires a chart type and a query for the initial data series.

For now, you’ll stick with the blank home page and create the rest of the pages later as needed. Thus,
the next step is simple:

6. An application home page has already been created. Accept the defaults on this
page and click Next.

Copying Shared Components
The next screen asks whether you wish to copy shared components from another application. This comes
in handy if you have a template application that houses components that are shared across applications in
the same workspace. Copying shared components isn’t an advanced procedure, but it does lend itself to a

Figure 5-12. Multiple pages defined in the Create Application wizard

Chapter 5 ■ appliCations and navigation

77

controlled and mature development process. This step in the wizard is a convenience, because the same
objects can be copied in other ways after the application has been created. You don’t need this step, because
you’re creating an application from scratch. Skip the step as follows:

7. Select No for Copy Shared Components from Another Application, and click
Next.

Application Attributes
The next step in the wizard allows you to set some of the application-level attributes, such as the type of
authentication to use and globalization attributes, including from where to derive the primary language,
date formats, and so on. Let’s look at each of these individually so you can gain a full understanding of the
ramifications of each.

Selecting an Authentication Method

With every application, you need to make a choice about authentication, even if that choice is no
authentication at all. This topic is discussed further in Chapter 9. By default, the APEX Create Application
wizard provides three options for authentication:

• Application Express Accounts: Users and passwords are local to the APEX workspace.
These users are managed in the same way the developer accounts are managed
inside the APEX workspace, and users only work inside the current workspace.

• Database Account: This option uses the Oracle Database schema user names and
passwords for credentials. Some organizations use this type of database-driven
authentication to keep track of users. The application still executes as the chosen
“parse as” schema, not as the individual user in the database.

• No Authentication: This is like a public website. Users aren’t prompted for any type
of authentication. This is useful for informational applications where the question
“Who are you?” isn’t important.

For simplicity, the default is to use the Application Express authentication scheme. This is the one
setting that provides login security; by default, the developer writing the application can log in without any
additional work.

■ Note Many organizations have an existing method of authenticating users. if an ldap server is currently
available (such as oracle internet directory, Microsoft active directory for network domain authentication, or
even an oracle e-Business suite), you may want to use this system for apeX authentication. the number of
options and methods is beyond the scope of this book. simply know that with the oracle database technology
and the technology of your application server, it’s possible to use many of the most common authentication
infrastructures.

http://dx.doi.org/10.1007/978-1-4842-0466-5_9

Chapter 5 ■ appliCations and navigation

78

Selecting Tab Options

Tabs are a common navigational structure for web applications and have been supported by traditional
APEX themes since very early versions. They provide an intuitive interface for switching subjects or general
areas in an application. Three options are available:

• No Tabs: This is a basic page style where no tabs are generated by the wizard and no
tabs are displayed by the page template. This is often selected for small applications
or applications where navigation is managed by a different method, such as lists,
buttons, or other template constructs.

• One-Level Tabs: This is the most common style of tab layout; it’s useful for small-
to mid-sized applications where functionality needs to be separated yet easily
accessible. This is also the easiest type of tab style to manage.

• Two-Level Tabs: The construction of two-level tabs uses a parent tab construct and
breaks the standard tabs into tab sets. It’s similar to having a controlling tab.

Legacy themes within APEX support up to two-level tabs in the display templates provided, and the
wizard builds the shared components for the tab set as part of the wizard. If you know your application’s
page outline and can lay it out during the creation of the application, the wizard will do most of the tab
setup. Designing the page at creation time can be a big timesaver if the application design calls for a
significant number of tabs. In any case, you can create and modify the shared component after the initial run
of the Create Application wizard.

■ Note the new Universal theme does not use tabs for navigation, but instead uses nested static lists.
therefore, when you choose to use the Universal theme, the tabs option on the application attributes page of
the wizard will be absent.

Globalization Options

The authentication step in the wizard also includes six additional settings, as shown in Figure 5-13. A
few of the settings have to do with the ability to translate the application to other languages. Multilingual
applications are beyond the scope of this book, but for completeness the general usage descriptions of these
options are included.

Chapter 5 ■ appliCations and navigation

79

These settings are as follows:

• Language: This is the language the application uses by default. It’s also used as
the basis for any internationalization and translation in the case of multilingual
applications.

• User Language Preference Derived From: For multilingual applications, this setting
determines how the application derives the translation that is necessary.

• Date Format: This option sets the default of how date elements are formatted within
the application. Different regions of the world have assumptions about how dates are
formatted, especially when they’re strictly numeric values. A common format that
is used to try to alleviate this issue is the DD-MON-YYYY format. This style of format
makes it clear which portion represents the day, month, and year (for example, 01-
JAN-2010).

• Date Time Format: This option sets the default formats of dates that include a time
dimension.

• Timestamp Format: This option specifies the format used for timestamp datatypes
used throughout the application.

• Timestamp Time Zone Format: This option specifies the format used for timestamp
datatypes with time-zone data used throughout the application.

The wizard uses these settings as starting values. You can alter them as needed in the shared
components of the application.

Figure 5-13. The Attributes page of the Create Application wizard

Chapter 5 ■ appliCations and navigation

80

The language, date format settings, and time zone handling are classified as globalization settings.
After the application is created, you can turn on automatic time-zone detection; this setting is found on
the Globalization tab of the Application Settings. Automated time-zone detection is especially useful for
applications whose users span different time zones.

Continue creating the example application as follows:

8. Set Authentication Scheme to Application Express, Language to English
(en), and User Language Preference Derived From to Application Primary
Language.

9. Choose 12-JAN-2004 (returns DD-MON-YYYY) for Date Format and 12-JAN-2004
14:30:00 (returns DD-MON-YYYY HH:MI:SS) for Date Time Format, and leave
the last two options blank.

10. Click Next.

Completing the Create Application Wizard
The last step of the wizard is a simple confirmation dialog. Clicking the Create Application button seen
in Figure 5-14 commits all the settings and generates the application. The Previous button lets you walk
backward through the wizard to make any additional changes before you complete the process.

Figure 5-14. Completing the Create Application wizard

Chapter 5 ■ appliCations and navigation

81

Complete your creation of the example application by executing the final step in the process:

11. Review the wizard’s summary page and confirm the choices you’ve made by
clicking Create Application.

You now have a simple application with only two pages, as shown in Figure 5-15 (View Report view).
Run that application, and you should see the login page shown in Figure 5-16. That login page takes your
normal APEX developer user name and password. Once logged in, you’ll be taken to the application’s Home
page, as shown in Figure 5-17.

Figure 5-15. Resulting pages for the Help Desk application

Figure 5-16. Login prompt when running the application

Chapter 5 ■ appliCations and navigation

82

Figure 5-17. The application after you’ve logged in

Now that you have the shell of the application created, you can move forward in extending it by adding
other pages, regions, and items.

Static Content Regions
The Static Content region type is one of the most basic and yet most flexible types of region. By manipulating
the attributes of a Static Content region, as shown in Figure 5-18, you can control how that region is
displayed:

• Output As: Selecting HTML will interpret any markup as entered in the region source
as HTML and will render the resulting output. Selecting Text (escape special
characters) will escape (not interpret) special characters such as <, >, & when
emitting the region source to the page. Example:
 will show up exactly as the
code
 rather than being interpreted as a break or return.

• Expand Shortcuts: Enables or disables support for shortcut technology. This
technology includes a shared component object that can be used for managing a
type of variable using SHORTCUT_NAME syntax.

Chapter 5 ■ appliCations and navigation

83

With the Static Content region’s simplicity comes a wide variety of uses. A Static Content region is a
container that can have its own value, embedded JavaScript, or CSS definitions, or it can contain other page
items. Any valid HTML entered in the source is rendered on an APEX page. Substitution-string syntax, such
as &ITEM_NAME., can also be used to display item values in the source text.

Continuing with the Help Desk application, add some content to the first page:

1. Navigate to the Application Builder, and Edit the Help Desk application.
Depending on how you’re viewing the applications report, you may need to click
the icon as shown in Figure 5-19 or click the name of the application as shown in
Figure 5-20.

Figure 5-19. Edit the Help Desk application from the icon view

Figure 5-18. Viewing the attributes of a Static Content region

Figure 5-20. Edit the Help Desk application from the report view

2. Edit the Home page by clicking the link for the page name in the report, as shown
in Figure 5-21.

Chapter 5 ■ appliCations and navigation

84

3. From the Gallery in the lower center of the screen, select Regions for the
component type.

4. Click and drag the Static Content icon from the Gallery into the Grid Layout
section of the screen and drop the component in the Content Body content area,
as shown in Figure 5-22.

Figure 5-22. Dragging the Static Content component to the Content Body area

Figure 5-21. Editing the Home page

Once you’ve dropped the component, the view will change, showing the new region in place within the
Grid Layout and selected as current within both the Tree Pane and the Grid Layout, as shown in Figure 5-23.

Chapter 5 ■ appliCations and navigation

85

Now, edit the attributes of the new region:

5. In the Attributes Pane, under the Identification section, set the Title to APEX
Issue Tracker.

6. In the Attributes Pane, under the Source section, enter the following for the Text
and then click the Save button at the top of the page. See Figure 5-24.

<h1>Welcome to the APEX Issue Tracking System</h1>

Select an option from the list

Figure 5-23. The new Static Content region shown in the Page Designer

Chapter 5 ■ appliCations and navigation

86

Run the page by clicking the Run button at the top of the Page Designer. You should see the changes
you just made indicated by a new region with a friendly welcome message. Your results should be similar to
those shown in Figure 5-25.

Figure 5-24. Entering the Title and Text and saving your work

Figure 5-25. Results after adding the Static Content region

Chapter 5 ■ appliCations and navigation

87

Public Pages
As mentioned, it’s possible to allow the entire application to use no authentication scheme. But what if you
want some of the pages to require authentication, and others to be public? How can you make a page that
doesn’t require a login in order to view it?

If any of the pages in an application require authentication, an appropriate authentication scheme
must be applied to the whole application. APEX lets you define individual pages as Public or Requires
Authentication using a defining property of the page. Each page can have different security requirements
(authorization), but only one authentication mechanism can be applied to an application. Public pages are
useful for introductory landing pages, login pages, and information pages.

In the Help Desk project, you want to have the main page available to all visitors. To accomplish
this, you can modify the first page of the application to allow it to be seen by anyone without requiring
authentication. Do that via the following steps:

1. In the Help Desk application, navigate to and edit page 1.

2. In the Tree Pane, edit the page attributes by clicking the page name (Home) in
the Rendering Tree. The page name appears as the root node of the tree, as
shown in Figure 5-26.

Figure 5-26. Selecting the page node in the Rendering Tree

3. In the Attributes Pane, scroll to the Security section, shown in Figure 5-27. In this
section, change Authentication to Page Is Public.

Chapter 5 ■ appliCations and navigation

88

4. At the top of the page, click Save.

Now, when the page is run, the authentication screen doesn’t appear when page 1 is requested. You will
learn more about authentication and authorization in Chapter 9. For now, just know that the change you’ve
made allows users to see the first page of the application without being logged in.

Navigation Bar Entries
Each APEX application has one navigation bar that may contain multiple entries. Examples of links typically
displayed on every page are Login, Logout, Help, and My Account. As a developer, you can create and modify
navigation bar entries depending on the application and need. The navigation bar can also go beyond
standard link text; it can be modified to include images. Entries can be based on conditions, authorization
schemes, and build options. Placement of navigation bars is dictated by the page template substitution
variable #NAVIGATION_BAR#. In most applications, the navigation bar is placed either at the upper right or
upper left of the page.

The example application already has a very simple navigation bar that has been created for you, as
shown in Figure 5-28. It currently contains only a Log Out link.

Figure 5-27. Changing a page’s authentication setting

http://dx.doi.org/10.1007/978-1-4842-0466-5_9

Chapter 5 ■ appliCations and navigation

89

Because you’ve modified the Home page to be a publicly viewable page, you need to add a navigation
bar entry that allows users to log in. At the same time, you need to make both the Login and Log Out links
context sensitive so they’re only displayed when it makes sense. (For instance, the Log Out link should only
be displayed when a user is actually logged in.)

Navigation bars are part of an application’s shared components, so they’re created and maintained from
the Shared Components section of the Application Builder. Create one in the example application as follows:

1. From the Page Designer, click the Shared Components icon in the upper-right
section of the page, next to the Save button, as shown in Figure 5-29.

Figure 5-29. Navigating to the Shared Components screen from the Page Designer

Figure 5-28. The basic navigation bar

2. Under the Navigation section, click Navigation Bar List, as shown in
Figure 5-30.

Figure 5-30. Navigation components in the Shared Components screen

Chapter 5 ■ appliCations and navigation

90

You’ll see a report showing that a Navigation Bar List called Desktop Navigation Bar already exists. You
will need to edit this list to add your Login entry and to edit the Log Out entry.

3. Click the Desktop Navigation Bar link in the report.

4. Click the Create List Entry button in the upper right of the screen.

5. In the Entry section of the page enter Login in the List Entry Label field.

6. In the Target section, set Target Type to Page in This Application.

7. For Page, enter 101. This will send the user back to the login page after they’ve
logged out. See Figure 5-31.

Figure 5-31. Navigation bar settings

8. In the Conditions section, set Condition Type to User is the Public User (user
has not authenticated), as shown in Figure 5-32.

Figure 5-32. Navigation bar conditions

Chapter 5 ■ appliCations and navigation

91

9. Click Create List Entry at the top of the page.

Run the application now. If you’re logged in, you only see the Log Out navigation bar entry. Click
the Log Out link. Once you’re logged out, you see the new navigation item, as shown in Figure 5-33. This
identifies a small problem: the Log Out link can still be seen even though you’ve already logged out.

Figure 5-33. Login and Log Out links both showing

Clearly, it’s a problem to show the Login and Log Out choices at the same time. After all, only one of
those two choices can apply. Let’s tackle that problem:

1. Navigate back to the Shared Components section for the Help Desk application.

2. Edit Navigation Bar List, and then edit the Desktop Navigation Bar list.

3. Edit the Log Out navigation bar entry by clicking on its name in the report.

4. In the Conditions section of the page, set Condition Type to User is
Authenticated (not public), as shown in Figure 5-34.

Figure 5-34. Navigation bar condition type

5. Click Apply Changes.

Run the application again. You should see that the Login and Log Out navigation items are mutually
exclusive. When you created the new navigation item, you applied the condition to allow it to be seen only
by the public user. The Log Out navigation item was created as part of the Create Application wizard; no
condition was placed on the Log Out item by default. You will learn more about conditions in Chapter 8.

Global Pages
A Global Page is a special type of page that acts as a “master page” for your application and can be added
one per user- interface type (that is, you may have one Global Page for the Desktop UI and another for the
Mobile UI).

Items placed on a Global Page are rendered on every page in its related UI for that application unless
conditionally told to do otherwise. This is particularly useful when you identify the need to display the same
region on multiple pages or even on all pages in your application. Simply move a region to your Global Page,
and it’s rendered with every page.

http://dx.doi.org/10.1007/978-1-4842-0466-5_8

Chapter 5 ■ appliCations and navigation

92

A good example of usage is a breadcrumb region or a region that contains custom JavaScript code that
needs to be available to every page. Region contents from a Global Page are included on every page of that
UI, even when a region doesn’t render visibly.

Although you can assign any page number to a Global Page, the default page number for a Global Page
related to a desktop interface is zero (0). In fact, Global Pages take the place of what used to be called Page
Zero in previous versions of APEX.

You may notice when looking at the definition of a Global Page in the APEX Page Designer (Figure 5-35)
that there are no nodes in the Tree Pane for the Processing tab. Global Pages are only used during page
rendering. Regions that are added to a Global Page are included even on the Login page. You need to consider
the different page types in an application when adding content to a Global Page.

Figure 5-35. There are no Processing nodes for a Global Page, as shown in the APEX Page Designer

Creating a Global Page is like creating any other page in an APEX application. However, once it’s
created, it’s no longer available in the Creation Options list for that UI type. Let’s create a Global Page for the
desktop interface:

1. From the Application page list, click the Create Page button.

2. In the resulting pop-up wizard, select Global Page from the Page Type list and
click Next. Figure 5-36 shows the Global Page option, which should be near the
bottom of the list.

Chapter 5 ■ appliCations and navigation

93

3. Leave Page Number set to 0 (zero), and click Create.

You should now see your Global Page listed in the pages for the application. Currently, there is no
content on the Global Page. You will use this Global Page to contain and display the breadcrumb region
covered in the next section.

Breadcrumb Regions
Breadcrumbs are a popular navigation structure. They give the user a quick and intuitive representation
of the current navigation path with optional functionality to navigate back using the structure. Oracle
Application Express uses the structure in the builder shown in Figure 5-37.

Figure 5-36. Choosing to create a Global Page

Figure 5-37. Example of breadcrumbs in the Application Builder

In APEX, breadcrumbs are a declarative structure with built-in behavior. They’re managed as shared
components and have their own region type and template. When you ran the Create Application wizard,
the pages that the wizard created automatically included a region to contain the breadcrumbs. Figure 5-38
shows the Breadcrumbs region in the Breadcrumb Bar section of the page.

Chapter 5 ■ appliCations and navigation

94

When you’re creating new pages for an application, the Create Page wizard has an option to assist in
creating new breadcrumb entries. When you use this option, child pages receive a copy of the breadcrumb
region from the parent, as well as an automatic entry in the Breadcrumb group. When a breadcrumb
region doesn’t exist, nothing is copied, but the entry in the breadcrumb shared component is still created.
An issue with this approach is that if you need to make any changes to the region’s display or other layout
considerations, they have to be done manually on every page that contains a breadcrumb region. Adding
the region to a Global Page to make it appear on all pages can be helpful, because it gives you one point of
change instead of many.

Continuing with the Help Desk application, the design is supposed to have a breadcrumb region that
appears on all pages. It isn’t necessary to re-create the region manually. Because the Create Application
wizard created the region for you, you can use the Copy Region feature in APEX to duplicate the region to
your Global Page. Do the following:

1. Edit Page 1 using the Page Designer.

2. Right-click the Breadcrumbs region in the Rendering Tree Pane to show the
context menu, as shown in Figure 5-39.

Figure 5-38. The Breadcrumbs’ position in the page-rendering hierarchy

Chapter 5 ■ appliCations and navigation

95

3. Select the Copy to other Page... option.

4. Change the page number for the new region to 0, as shown in Figure 5-40, and
click Next.

Figure 5-39. Context menu for the Breadcrumbs region

Figure 5-40. Setting the destination page

Chapter 5 ■ appliCations and navigation

96

The Copy wizard allows the modification of what is copied in a limited fashion. Options that don’t
apply are disabled. In the current example, you could modify the region name and sequence as well as some
display-placement options. For now, leave them with their default values:

5. Confirm the settings shown in Figure 5-41. Click Copy to complete the wizard.

Figure 5-41. Confirming the copy operation

Reviewing the change in the Page Designer, notice that the Global Page now has the new breadcrumb
region, but the original breadcrumb region still remains on page 1. In running the application, you can see
the two breadcrumb regions shown in Figure 5-42. Note that the Copy feature doesn’t remove the existing
breadcrumb region.

Chapter 5 ■ appliCations and navigation

97

To correct this duplication, do the following:

1. Edit Page 1.

2. Right-click the Breadcrumbs region name in the Rendering Tree and select
Delete from the context menu, as shown in figure 5-43.

Figure 5-43. Preparing to delete a redundant breadcrumb region from Page 1

Figure 5-42. Redundant breadcrumb regions

Chapter 5 ■ appliCations and navigation

98

3. Click the Save button in the upper-right area of the Page Designer.

Now, re-test the application. You should just see the Global Page version of the breadcrumbs region, as
shown in Figure 5-44.

Figure 5-44. Completed migration of the breadcrumb region to the Global Page

Figure 5-45. Breadcrumb groups available in the application

Effectively, you have moved the management of the breadcrumb region to the Global Page. Any setting
changes to that region done on the Global Page are seen on all pages of the application without requiring
any additional work.

Breadcrumb Entries
As additional pages are added to the application, the page-creation wizard prompts for optional breadcrumb
settings. If they weren’t set at the time the page was created, or if they need to be modified from their existing
settings, you can modify the data that drives the breadcrumbs in the Shared Components section of the
application.

It’s possible to have several breadcrumbs in one application. A default breadcrumb with the name
Breadcrumb is created as part of the APEX Create Application wizard. This is the name of the grouping
of breadcrumb entries. APEX provides some utilities to see where breadcrumbs are used as well as easy
methods of editing entries.

To see the breadcrumb groups created, navigate to the Shared Components section and click the
Breadcrumbs option in the Navigation section. Figure 5-45 shows the main screen for listing the different
breadcrumb groups.

Clicking the group name displays the detailed entries in that group, as shown in Figure 5-46. The entries
can be modified independently here. As an application becomes larger, you may need to arrange the entries
into different breadcrumb groups.

Chapter 5 ■ appliCations and navigation

99

Lists
As the name implies, a list is a structure that APEX uses to keep a collection of data for links. The list
structure allows menus to be displayed consistently across numerous application pages, with easy
maintenance performed in the Shared Components area of an application. Don’t confuse navigation lists,
which we are discussing here, with lists of values (LOVs). Lists are a navigational structure with built-in
templates for displaying information in different ways. LOVs are used to support data entry, limiting the
options a user can enter.

There are two types of lists: static and dynamic. Static lists are made up of list items that aren’t data
driven but are instead entered at design time by the developer. Dynamic lists are data based, and the values
returned into the list are based on an SQL query.

List templates have a lot of capability. They support hierarchical lists, graphical bullets, dynamic
HTML, and highlighting for the current page. Lists can contain data in a parent-child relationship; some list
templates are specifically designed to display parent-child data. APEX themes contain a variety of templates
for lists, but if the behavior you’re looking for isn’t already available, it’s possible to modify or create your
own list template to display and behave as desired.

As briefly mentioned earlier in this chapter, the new Universal Theme uses static lists instead of Tabs for
navigation. A list named Desktop Navigation List is created to hold the navigation for the site, and a special
List template built into the Universal Theme is used to display the list, depending upon some application-
level attributes.

Whether using lists or tabs, as you navigate through the page-creation wizards, APEX will ask if you
wish to create a navigation entry for the page you are creating. If you choose to create a new navigation entry
while using the Universal Theme, a new list entry is created for you.

Although we could let the page-creation wizard create all of the list entries for us, you’re going to create
two entries in the list for pages that don’t exist yet to show you how it can be done manually. Don’t worry—
you’ll create those pages in the next few chapters. Here’s the process to follow:

1. Navigate to the Shared Components section of your application.

2. Locate and click the Lists entry under Navigation.

3. Locate and click the Desktop Navigation Menu list in the resulting report.

4. To create a new list entry, click the Create List Entry button shown in
Figure 5-47.

Figure 5-46. Detail of entries in a breadcrumb group

Chapter 5 ■ appliCations and navigation

100

The resulting page presents all the options available for a list entry. A lot of functionality is built into the
lists structure. The key items you’re interested in are shown in Table 5-1. Fill out the page shown in
Figures 5-48 and 5-49 using the values from Table 5-1. Leave any other values at their defaults.

Figure 5-47. Creating a new list entry

Table 5-1. Values to Use for the First List Entry

Section Value Entry

Entry Parent Home

List Entry Label Submit a Ticket

Target Page 2

Clear Cache 2

Figure 5-48. Choosing a parent list entry and setting the label

Chapter 5 ■ appliCations and navigation

101

5. Once you’ve finished your entries for the first list item, scroll to the top of the
page and click the Create and Create Another button. This brings you back to
the same page and allows you to add another list entry. Use the information in
Table 5-2 to create the second list entry.

Figure 5-49. Target definition

Table 5-2. Values to Use in the Second List Entry

Section Value Entry

Entry Parent Home

List Entry Label Contact Us

Target Page 3

Clear Cache 3

6. Click Create List Entry to save your changes.

You should now have a list with three entries in it, as shown in Figure 5-50. The List Details tab shows
some important information in a single view. The Sequence value identifies the order in which the items
are listed when using an unordered list type. Some list types are classified as ordered, in which case they’re
sorted by name alphabetically. The Target value is the construction of a URL that includes the page to
navigate to as well as a clear-cache instruction. Several of the declarative forms construct a URL based on the
inputs provided, in the same way as for the list entry.

Chapter 5 ■ appliCations and navigation

102

A list, as a shared component (unless it is designated as the default navigation list for the UI), doesn’t
display in an application directly. Normally, a list region must be configured on a page in order for the list to
be seen by the user. APEX has a template type defined specifically to support lists. The list templates contain
all the intelligence required for dynamic lists and options for display. When you’re creating a list region, the
template choice can be set, and it can be modified through the region settings.

In our case, the list entries you created will be displayed as part of the navigation list region that is part
of the Universal Theme.

Running your application now should result in the list entries you created appearing on the left side of
the screen as part of the Navigation menu (Figure 5-51). Clicking either link generates an application error.
This is expected: you’ve asked the application to link to pages that don’t exist yet.

Figure 5-50. List entries at a glance

Figure 5-51. Navigation menu with new list entries

Lists of Values
One of the fundamental benefits of writing an application on top of a database architecture is the ability to
enforce data quality. LOVs are an APEX component that can be mapped to different item types, including
Select Lists, Multiple Select Lists, Checkboxes, and Radio Groups. These types of structures help ensure that
data collected through transactions is consistent. As with lists, there are two types of LOVs in APEX:

• Static: A set list of options in APEX

• Dynamic: Based on data in the database returned via SQL

Chapter 5 ■ appliCations and navigation

103

LOVs can be defined as shared components either at the application level or at the item level. Figure 5-52
shows an item-level attribute definition for a static LOV. An LOV used more than once should be written
as a shared component. This allows the maintenance of that LOV to be centrally located with the Shared
Components. If an LOV is created at the item level, it’s easy to convert it to a shared LOV by using a utility
that APEX provides. When viewing the LOV Shared Components, an LOV that is locally defined can be
edited and converted to a Shared Component LOV.

Figure 5-52. An item-level LOV with static options

Static List of Values
A static list of values is simply a set of display and return value pairs. This type of list is normally short and
unchanging. When you define a static list of values at the item level, there are two types of data options:

• STATIC: Entries are automatically alphabetized.

• STATIC2: Entries render in the order in which they’re entered.

The syntax for specifying a static LOV is as follows:

TYPE:DISPLAY;RETURN,DISPLAY;RETURN,...

The TYPE may be either STATIC or STATIC2.
If you wish the display value and the return value for a given entry to be the same, omit the semicolon

and specify only one value. For example, the second item in the following example is a single value for both
display and return:

TYPE: VALUE1,VALUE2,VALUE3,...

The return value in an LOV is saved as the value of the associated form item. In static lists, using the
semicolon as the value of an entry may cause issues with parsing the list.

The following is an example of a static list. Commas separate the list items. Each list item is composed
of a display value and a return value, with a semicolon separating those two values:

STATIC:C;1,A;2,D;3,B;4,

When you display the values in this list, you see only the display values. Because the list is type STATIC,
the values are displayed in alphabetical order:

A
B
C
D

Chapter 5 ■ appliCations and navigation

104

Next is an example of a STATIC2 list. Notice that the entries are specified in the same order as before:

STATIC2:C;1,A;2,D;3,B;4,

However, this time the values are displayed in their order of definition. They are not sorted
alphabetically:

C
A
D
B

Shared-component static LOVs have more options than item-level static LOVs. Due to their shared nature,
conditions and build options can be configured. These can be edited after the list has been created. Because
the lists are stored differently as shared components, it’s possible to use a semicolon in the item value.

Dynamic List of Values
As with static LOVs, dynamic LOVs have a display and return value pair requirement. The difference is
that the values are obtained through an SQL query. The SQL query you write must return two columns.
If the columns are the same, you need to use aliases to distinguish a display value and a return value.
You must also use an alias if you’re using a concatenated string as a column. Dynamic LOVs can also use
session variables or values currently being used in the application. This gives dynamic LOVs flexibility to
dynamically change what is offered during runtime.

The example application needs two LOVs to support the selection of user names. In preparation for
building your form pages, create an LOV to support the names of the users and the technicians in your Help
Desk system:

1. Navigate to the Shared Components section of the Help Desk application, then
go to the Other Components section shown in Figure 5-53, and click the Lists of
Values link.

Figure 5-53. Other Components options

Chapter 5 ■ appliCations and navigation

105

2. Click the Create button to create a new LOV.

3. Choose From Scratch as the method of creating your LOV, as shown in
Figure 5-54.

Figure 5-54. Creating an LOV from scratch

4. Click Next.

5. Enter TECHS as the Name value and choose Static as the Type, as shown in
Figure 5-55.

Figure 5-55. Specifying a list as static

Chapter 5 ■ appliCations and navigation

106

6. Click Next.

7. Enter the values shown in Table 5-3 into the form. Add your own name to the list!

Table 5-3. Display Attributes for the LOV

Display Value Return Value

Scott SCOTT

Doug DOUG

Karen KAREN

Martin MARTIN

Patrick PATRICK

Tim TIM

(Your Login Name) (YOUR LOGIN NAME)

8. Click Create List of Values when you’re finished.

Now that you’ve created a static LOV, let’s include a second one that uses an SQL query to derive the list
of values:

9. Repeat steps 1 through 4.

10. Create a second list named USERS, selecting the Dynamic option. Click Next.

11. Locate the book supplemental file ch5_lov.txt that includes the SQL query text.
Enter the SQL query for the LOV source.

12. Click Create List of Values.

You should now have two LOVs. Don’t worry if you made a mistake. All the settings can be modified—
simply click the name of the LOV you want to modify.

Summary
In this chapter, you created the basic shell of an application and several of the supporting objects that you
will use in the upcoming chapters. These items have been created as a result of planning that was done
prior to starting to create the application. Depending on your situation, the amount of planning you do for
your own application will vary. The shared components outlined here can be created at any time during the
development process. In the next section, you will start using some of the key structures outlined here.

107

Chapter 6

Forms and Reports: The Basics

Now that you have the database objects and the base application in place, you can get to the real work of
building pages in your application. Most applications contain a series of forms, reports, charts, and other
elements designed to display, edit, and collect data.

This chapter focuses on basic forms and reports. These are the simplest, most standard types of forms
and reports in APEX. They’re most often created by using the APEX wizards, which create all the elements of
a form or report for you.

In the sections that follow, you will learn how to use the APEX wizards to add pages to your Help Desk
application. You will create some basic forms and reports on the Tickets table; you will also look at the
elements created by the wizards for your working forms and reports.

APEX Forms
Forms are used to display, edit, and collect data, which is then sent back to the database for processing.
Forms can interface with tables, views (via “instead of” triggers), procedures, and web services.

An APEX form is actually a collection of APEX objects acting together as a single, cohesive unit to
perform insert, update, and delete operations on data elements. An APEX form generally consists of a
region, one or more items, one or more buttons, and one or more processes that handle interactions with the
database. The APEX form wizards create all the objects necessary for a fully operational form.

■ Note Once a form is generated, the objects in it aren’t logically associated in any way except that they
collectively make a complete working form. Although it’s possible to alter or delete individual elements, doing so
may cause the form to not work properly if an error is introduced; thus, doing so is not recommended.

The APEX form wizards listed in Figure 6-1 are the fastest, most effective, and most accurate way to
create APEX forms. The wizards guide you through a series of steps, collect the information required for the
form type, and then generate all the required items, processes, and buttons. Using the wizards frees you from
the tedious and error-prone task of individually creating each component. After a wizard creates a form, you
can, and likely will, make modifications and enhancements to the resulting components to tailor the form to
your specific requirements.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

108

The following are some of the form types that you can create using the wizards listed in Figure 6-1:

• Form on a Table with Report: A form built on the columns of a table or view, having
one item for each table column and processing a single row of data at a time, plus a
report on the contents of the table or view, with navigational elements between the
report and form pages.

• Form on a Table or View: A form built on the columns of a table or view, having one
item for each table column and processing a single row of data at a time.

• Master Detail Form: A form on a pair of tables having a master–detail relationship.
The APEX Master Detail Form Wizard creates all the data, processing, and
navigational elements required for managing master–detail data.

• Tabular Form: A multi-row, multi-column form (like a spreadsheet) that allows the
editing of multiple rows and columns of data at once.

• Form on a Procedure: A form based on the parameters of a procedure, typically to
collect values for passing in to a procedure for subsequent processing.

• Form on a SQL Query: A form built on the results of a SQL query. This is a very
powerful form construct due to its flexibility.

• Summary Page: A display-only form showing selected items from an existing input
form page. A summary page is often used in building a confirmation page for a
wizard.

• Form on Web Service: A form on the arguments of a web service.

• Form and Report on Web Service: A single-row form on the arguments of a web
service with a corresponding report of all rows of data, including navigational
elements for moving from report to form and back.

Figure 6-1. APEX Create Page wizard showing form options

ChApter 6 ■ FOrms And repOrts: the BAsiCs

109

If you look at the available APEX form wizards, you can see that several of them create accompanying
reports (the Form on a Table with Report and Form and Report on Web Service Wizards). It’s a common
practice to use a report on a table, view, or web service to locate a particular row of data and then edit that
data in a form on the same table, view, or web service. Some wizards simply create both the report and
the form for you, including all navigation elements and database-transaction processes required to make
everything work.

Form on a Table
One of the most common types of form in APEX is the form on a table. The APEX Form on a Table wizard
automatically creates and maps APEX items to database columns, making it trivial to quickly create forms
for database table entry and updates. As a developer, you can then modify the different types of controls
for each column. All of the supported HTML widgets (text fields, text areas, select lists, radio groups, check
boxes, and so on) are available, as well as several APEX-specific ones. The best way to understand just what
the APEX Form on a Table wizard does is to use it, so let’s dive in and create a form on a table.

Creating a Form on a Table
In this section you will create Page 2 of your Help Desk system and add a form to it. This form will allow the
user to create a new ticket by inserting a row into the TICKETS table. You can limit which DML operations a
form in APEX can perform. In this case, you restrict it to only performing inserts.

The Form on a Table wizard walks through all the steps required to generate a form on a table: selecting
the parsing schema, selecting the table on which to base the form, selecting the columns to include and edit,
assigning region and form titles, and specifying column headings. Begin as follows:

1. Navigate to your application’s development home page. This is the page that lists
all of the pages in your application.

2. Click the Create Page button in the upper right of the screen.

3. Select Form, and click Next.

4. Select Form on a Table or View, and click Next.

5. Set Table/View Owner to your schema, and select TICKETS (table) for
Table/View Name, as shown in Figure 6-2. Click Next.

Figure 6-2. Entering the schema and table name

ChApter 6 ■ FOrms And repOrts: the BAsiCs

110

The next step allows you to set some details about the page and region that will be created as a result of
the wizard. The Page Number can be set to anything you wish, but it must be unique within an application.
The Page Name sets the text that appears in the browser tab when the application is run, and the Region
Title sets the text that displays in the region’s title area.

The Page Mode dictates whether the page you are creating will be a normal APEX page or one of the two
types of dialogs now built in to APEX 5.0: modal or non-modal. Modal dialogs disallow interaction with the
page underneath the dialog, while non-modal ones allow the user to see and interact with the underlying
page.

The region template dictates how the region container is visually rendered. Each APEX theme has a
number of templates available, but you’ll find that you use the Standard template the most. Continue as
follows:

6. Enter 2 for Page Number, as shown in Figure 6-3. Enter Create a Ticket
for both Page Name and Region Title. Set the Page Mode to Normal. Set
Breadcrumb to Breadcrumb. When the page refreshes, set Parent Entry to
Home and click Next.

Figure 6-3. Specifying page, region, mode, and breadcrumb information

ChApter 6 ■ FOrms And repOrts: the BAsiCs

111

Next, you get to choose how this page relates to the menu system you’ve already defined, if it does at all.
We’ve already created the entries in the Navigation List for these pages, so we’ll use those as we create the
page:

7. For Navigation Preferences (Figure 6-4), select Identify an existing navigation
menu entry for this page. When the page refreshes, set Existing Navigation
Menu Entry to Home, and then click Next.

Figure 6-4. Specifying navigation options

APEX 4 introduced the ability to use ROWID as a primary key. This comes in handy when you’re dealing
with a table that has a multi-column natural primary key, but the table already has a single-column primary
key defined, so you’ll use that:

8. Set Primary Key Type to Select Primary Key Column(s), ensure that Primary
Key is set to TICKET_ID, and click Next.

The primary key of the table is based on a sequence within the database, and there is already a trigger
in place that fills the primary key with the next sequence value, if the primary key for the incoming record is
null, as follows:

ChApter 6 ■ FOrms And repOrts: the BAsiCs

112

9. Set Source Type to Existing Trigger, as shown in Figure 6-5, and click Next.

Next, specify the columns that will be visible and editable on the form. By default, all the columns in the
chosen table appear in the selected column. However, for this simple form, you want to restrict the columns
the user can see:

10. Using the shuttle, make sure SUBJECT, DESCR, CREATED_BY, and STATUS_ID are the
only columns selected, as shown in Figure 6-6, and click Next.

Figure 6-6. Selecting the columns to include

Figure 6-5. Specifying the primary key population option

ChApter 6 ■ FOrms And repOrts: the BAsiCs

113

Not all forms allow people to update or delete data. Some are simply data-entry forms. In this case,
you want un-authenticated users to be able to submit a ticket, but you don’t want them to be able to edit or
delete those tickets. The next step of the wizard allows the developer to choose which actions are available to
the end user and to name the buttons related to those actions.

Every form should have a Cancel button that allows the user to abort any actions or data entry. But the
rest of the buttons are optional:

• Create button: Saves a new record

• Save button: Saves updates to an existing record

• Delete button: Deletes an existing record

Continue now with creating the form:

11. Enter Cancel for Cancel Button Label and Create a Ticket for Create Button
Label. Set Show Save Button and Show Delete Button to No, as shown in
Figure 6-7, and click Next.

Figure 6-7. Specifying the buttons to display

When the user enters a ticket and clicks a button to either cancel data entry or create the new ticket, you
need to specify what happens next. Does APEX stay on the same page? Does it return to the home page?

ChApter 6 ■ FOrms And repOrts: the BAsiCs

114

In this instance, you want the user to be redirected to the home page no matter which choice they make:

12. Set both Branch here on Submit and Branch here on Cancel to 1, and click
Next. See Figure 6-8.

As with most wizards, you’re presented with a final page that summarizes your choices. At this point
you can use the Previous and Next buttons to work your way back and forth through the wizard steps to alter
any of your choices. Then do the following:

13. Click Create to complete the wizard.

14. Run your application.

Congratulations! You’ve just created a fully operational form on the TICKETS table. The form should look
similar to that in Figure 6-9.

Figure 6-9. Running the form on the TICKETS table

Figure 6-8. Specifying branching for Submit and Cancel

ChApter 6 ■ FOrms And repOrts: the BAsiCs

115

Notice that the form region is labeled as you specified in step 6, the form contains fields for the four
columns you selected in step 10, and the Create a Ticket button is labeled as you specified in step 11. Also
notice that the four fields are each created as the default element type specified in the UI defaults for the
TICKETS table that you created in Chapter 4. The help text you specified for each column is there, and it pops
up in a new window when you click the question mark icon at the end of the field. The Cancel button brings
you to the home page—page 1, as you specified in step 12. APEX did a lot of work for you!

Modifying a Form on a Table
The APEX wizards handle most of the work of creating a form for you. However, it’s rare that you won’t have
to make some minor changes to what the wizard creates. Now that you have the Create a Tickets form on
page 2 of your application, you can make a few changes to polish it up a bit.

Changing the Label Templates
You’ll change the label templates for P2_SUBJECT and P2_CREATED_BY (the items that correspond to the
SUBJECT and CREATED_BY table columns) to Required with Help. Use of the Required with Help label
template indicates to the end user that this is a required field on the form. However, it doesn’t make the field
itself mandatory. You will do that later.

You’ll also reduce the width of P2_CREATED_BY so it doesn’t take up as much space. Begin as follows:

1. Edit Page 2 of the application.

2. Edit the item P2_SUBJECT by clicking its name in the Rendering tab of the Tree
Pane.

3. In the Property Editor, scroll to the Appearance attribute group, as shown in
Figure 6-10, and set Template to Required, and click Save.

Figure 6-10. Modifying the label templates

http://dx.doi.org/10.1007/978-1-4842-0466-5_4

ChApter 6 ■ FOrms And repOrts: the BAsiCs

116

4. Edit the item P2_CREATED_BY by clicking its name in the Rendering tab of the
Tree Pane.

5. In the Property Editor, scroll to the Appearance attribute group, as shown in
Figure 6-11. Set Template to Required, and the Width to 20, then click Save.

Figure 6-11. Setting the display attributes

Figure 6-12. Specifying a default value

Next, you want to hide the P2_STATUS_ID item from the user, because you don’t want the user to
change this value. You do, however, want all new tickets to be created with a default value of OPEN. Because
you can’t guarantee which STATUS_ID maps to which STATUS, you can call a simple function and pass in the
STATUS. This function, in turn, returns the corresponding STATUS_ID, which is set as the default value for
P2_STATUS_ID:

1. Edit the item P2_STATUS_ID by clicking its name in the Rendering tab of the
Tree Pane.

2. In the Identification attribute group, set Type to Hidden.

3. In the Default attribute group shown in Figure 6-12, set Type to PL/SQL
Function Body and set the default value to RETURN get_status('OPEN');. This
function was created as part of the script run in Chapter 4.

4. Click Save.

http://dx.doi.org/10.1007/978-1-4842-0466-5_4

ChApter 6 ■ FOrms And repOrts: the BAsiCs

117

Next, you want to set page 2 to be a public page. You want any user—authenticated or not—to be able to
access this page:

1. Edit the page attributes for Page 2 of your application by clicking its name (Page 2:
Create a Ticket) at the top of the Rendering tab of the Tree Pane.

2. Set Page 2 to be a public page, and click Apply Changes. Refer back to Chapter 5
for detailed steps.

Finally, you need to make sure users enter values for the Subject and Created By fields. There are two
ways to make a field mandatory in APEX. For demonstration purposes you’ll use a different method for
each field.

Making the Fields Mandatory
For the Subject field, you’ll create a validation. Although a validation takes more steps, it gives you more
control over how and when it’s performed. Here’s what to do, first for the Subject field and then for the
Created By field:

1. Edit Page 2 of the application.

2. Create a new validation by switching to the Processing tab of the Tree Pane then
right-clicking the Validating node in the tree and selecting Create Validation, as
shown in Figure 6-13.

Figure 6-13. Choosing to create a new validation

http://dx.doi.org/10.1007/978-1-4842-0466-5_5

ChApter 6 ■ FOrms And repOrts: the BAsiCs

118

You will see a new node in the validation tree that is highlighted and has a red X next to the name. This
indicates that the validation has been created, but that there are attributes that must be filled in. Looking at
the Property Editor, you’ll see a number of attributes highlighted in red, as seen in Figure 6-14.

Figure 6-14. A new validation that needs to be completed

We’ll now fill out the required attributes for our validation, as seen in Figure 6-15:

3. In the Identification attribute group, set the name to P2_SUBJECT is NOT NULL.

4. In the Validation attribute group, set the Type to Item is NOT NULL, then using
the pop-up select list, set the Item to P2_SUBJECT.

5. In the Error attribute group, set the Error Message to #LABEL# must have some
value and set the Associated Item to P2_SUBJECT.

6. Click Save.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

119

Next, use the second method to make the Created By field mandatory. To do this, simply set an attribute
of the input item:

7. Switch to the Rendering tab of the Tree Pane and edit P2_CREATED_BY.

8. In the Property Editor, navigate to the Validation attribute group shown in
Figure 6-16, set Value Required to Yes, and click Save.

Figure 6-15. Entering the details for a new validation

Figure 6-16. Making a value required

ChApter 6 ■ FOrms And repOrts: the BAsiCs

120

If you check the Processing tab of the tree pane, you’ll see that no new validation has been created.
That is because you used the item-level attribute instead of creating a full validation. The main difference
between an item-level and a full validation is that with the item-level validation, you can’t conditionally
control when the attribute is applied, and you don’t have direct control over the error message that is
displayed.

Go ahead and run the application again. At this point, you should be able to enter new tickets into the
system but not see them anywhere outside of SQL Workshop.

Looking Behind the Scenes
Now that you have a working form, let’s look at just what the APEX Form wizard built in order to understand
a bit more about how your form works. If you have installed the Web Developer Toolbar add-in (available for
both Chrome and Firefox), you can use the Form ä Display Form Details option to display the form
details. Figure 6-17 illustrates the Create a Ticket form with the form details exposed.

Figure 6-17. Form on the TICKETS table with form details exposed

■ Note the Web developer toolbar add-in is a free web-development tool, written by Chris pederick, that
lets you inspect various aspects of a web page. to learn more about Web developer, visit
http://chrispederick.com/.

http://chrispederick.com/

ChApter 6 ■ FOrms And repOrts: the BAsiCs

121

The highlighted input tags display the input identifier and name for each field of the form. Both are unique
for each form field. The input identifier is the column name prepended with the page number. The input name
identifies the element names that APEX uses internally to process data in the form. Note that the columns you
didn’t choose to display in the form, TICKET_ID and STATUS_ID, are still present in the page’s HTML.

A look behind the scenes tells you more. Edit Page 2 to view the elements that make up the new form.
Figure 6-18 shows three of the tabs from the tree pane: Rendering, Processing and Shared Components.

The Rendering tab contains APEX objects required for page rendering. The Processing tab contains objects
required for page processing, such as validations, processes, and branches. The Shared Components tab
contains APEX objects that are shared across pages, such as tabs, lists of values, breadcrumbs, templates,
and security schemes.

Figure 6-18. Elements of a form as viewed from the Page Builder’s various tree panes

For your new Create a Ticket form, in the Rendering tab, you see that the wizard has created one item
for each of the columns from the TICKETS table that you selected via the wizard. There are also two buttons
called Cancel and Create, and a Fetch Row from TICKETS process. This process is an Automated Row Fetch
process, which does exactly what its name says: it fetches a row from the designated table into the current
form. The attributes of the Automated Row Fetch process specify the table owner, the table name, the
primary key column(s), success and failure messages, and a condition.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

122

Notice that the TICKET_ID item is present in the tree but isn’t rendered on the form, nor is it present
in the Grid Layout. It’s visible in the Display Details view (Figure 6-17) of the form as the first element on
the page, with no visible element associated with it. TICKET_ID is a hidden item. APEX hidden items exist
to hold a value, but although they’re rendered on the page, they aren’t visible to the user. In this case, the
hidden TICKET_ID column holds the primary key value for the TICKETS row. As the primary key, TICKET_ID
is used by the APEX processes to pull data from the database and to process inserts, updates, and deletes
on a TICKETS row. Because you don't want the end users to edit the primary key, APEX automatically hides
it for you.

In the Processing tab, you have a Process Row of TICKETS process, a Reset Page process, and a Go To
Page 1 branch. The Process Row of TICKETS process does just that: it processes one row of the TICKETS table
using the values from the items that correspond to the columns of the TICKETS table. This process fires when
the user clicks the Create button. The Reset Page process clears the items on the page. It fires when the user
clicks the Cancel button.

In the Shared Components tab, you need to expand the Navigation Menu tree node to see that this
page uses the Desktop Navigation Menu. Expanding the Breadcrumbs region shows the Breadcrumb object.
Under Templates, you see that your form uses the Standard page template, the Title Bar and Standard
templates, two different Page Item templates, and the default Button template.

All APEX form wizards create items, buttons, and processes, but in different combinations to suit the
specific needs of the form type. The other APEX form wizards perform essentially the same way, with slight
differences in process types and navigation objects so as to accommodate the underlying data source: table
or view, procedure, query, or web service. Next, let’s look at a form on a procedure.

Form on a Procedure
Another way to create a form in APEX is to create it based on the parameters of a PL/SQL procedure. Instead
of the traditional DML processes, APEX calls the associated procedure and executes whatever logic is
embedded within it. This method is also referred to as using table APIs, because this is the option to use if all
access to tables in your workspace schema must be done through a table API.

Creating a Form on a Procedure
The process to create a form on a procedure is almost identical to that of a form on a table. You create a
new page containing a form on the CONTACT_US stored procedure that was created as part of the exercises in
Chapter 4, which enables users to contact you through the Help Desk application:

1. Navigate to your applications development home page.

2. Click the Create Page button in the upper right of the screen.

3. Select Form and click Next.

4. Select Form on a Procedure and click Next.

5. Set Procedure Owner to your schema, enter CONTACT_US for Stored Procedure
Name, as shown in Figure 6-19, and click Next.

http://dx.doi.org/10.1007/978-1-4842-0466-5_4

ChApter 6 ■ FOrms And repOrts: the BAsiCs

123

6. In the top section of the page, enter 3 for Page Number, enter Contact Us for
both Page Name and Region Name, and set Breadcrumb to Breadcrumb.
When the region refreshes, select Home (Page 1) to set it as the Parent Entry, as
shown in Figure 6-20, and click Next.

Figure 6-20. Selecting the breadcrumb parent entry

Figure 6-19. Creating a form on a stored procedure

ChApter 6 ■ FOrms And repOrts: the BAsiCs

124

7. For Navigation Preferences, select Identify an existing navigation menu entry
for this page. When the page refreshes, set Existing Navigation Menu Entry to
Home, then click Next.

8. Leave Invoking Page and Button Label blank, and click Next.

9. Enter 1 for both Branch here on Submit and Branch here on Cancel, as shown
in Figure 6-21. Then click Next.

Figure 6-22. Specifying procedure arguments

Figure 6-21. Specifying branching options

10. In the dialog in Figure 6-22, set the Label for P_FROM to From. Set the Label for
P_BODY to Body. Set the Display Type for P_BODY to Textarea, and then
click Next.

11. Click Create.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

125

Modifying a Form on a Procedure
Once again, the wizard has done most of the work, but you have a few minor changes to make before your
form on a procedure is complete. You want both the From and Message values to be required, so you need to
change their label templates and set their Value Required attribute to Yes. This time we’re going to use a new
feature in APEX 5.0 that allows us to edit the properties of multiple components at once. Do the following:

1. Edit Page 3 of the application.

2. Select P3_FROM by clicking its name.

3. Holding the CTRL key (or Command key on Mac) select P3_BODY by clicking its
name. At this point both elements should be selected.

Now, if you look at the Properties Editor, you’ll see that there are several options that have a blue
background and a grey Delta (D) symbol just to the left of the label. This indicates that the components you
have selected have different values for these options. It’s simply a visual clue so that you know that the fields
may not in fact be blank, but that APEX can’t display the varying values between the components.

We’ll continue by changing the common attributes as follows:

4. In the Appearance attribute group, change Template to Required.

5. In the Validation attribute group, change Value Required to Yes.

6. We now want to change a few attributes only for P3_BODY. So we’ll have to de-
select everything else so we don’t accidentally change their attributes as well.
Remember, as long as you haven’t clicked the Save button, you can always use
the Undo button to step back through what you’ve done. To select P3_BODY and
de-select everything else:

7. In the Rendering tab of the Tree Pane, click on P3_BODY.

8. In the Appearance attribute group, set Width to 80 and Height to 5.

Next, set page 3 to be a public page. You want any user—authenticated or otherwise—to be able to send
you a message through the Contact Us page:

9. Set Page 3 to be a public page. Refer back to Chapter 5 for detailed steps.

Finally, modify the process that was created to include a success message:

10. Switch to the Processing tab of the Tree Pane.

11. Edit the process Run Stored Procedure by clicking its name.

12. In the Success Messages attribute group, enter the following for the Success
Message:

Your message has been sent.

13. Scroll to the top and click Save.

Run your application and test the Contact Us form. Each time you submit a record, an email is sent
to info@example.com. If you want to change the destination address for the email, you can use the SQL
Workshop’s Object Browser to edit the CONTACT_US procedure.

http://dx.doi.org/10.1007/978-1-4842-0466-5_5

ChApter 6 ■ FOrms And repOrts: the BAsiCs

126

Looking Behind the Scenes
From the user perspective, there is no indication that the form you’ve just created was created on a
procedure. Looking in the Page Builder, the objects in the Page Rendering sections are similar to what you
saw in your form on a table on page 2, but not exactly. Let’s take a look to see what makes your form on a
procedure different from the form on a table. Edit page 3 of your application. The different tabs of the tree
pane are represented in Figure 6-23.

Figure 6-23. Elements of a form on a procedure as viewed from the Page Builder’s various tree panes

In the Rendering tab, you have two items, P3_FROM and P3_BODY, corresponding to your two form fields,
From and Body. There are two buttons, CANCEL and SUBMIT.

In the Processing tab are a process and a branch. However, the process is a different type—a PL/SQL
anonymous block. This powerful type of process executes the PL/SQL procedure specified in the Source
element. The PL/SQL procedure can be a stored PL/SQL procedure or an anonymous PL/SQL block, as long
as the code is syntactically correct between a BEGIN statement and an END statement. In this case, the process
calls the CONTACT_US procedure using the P3_FROM and P3_BODY item values as input parameters. The body of
the CONTACT_US procedure is what creates and sends an email. Thus, the key difference between the form on
a table and the form on a procedure is in the page-processing process that is executed on a click of the Create
button. The APEX wizard has automatically provided the process type required for the selected form type.

The Shared Components region contains the standard entries for the table, breadcrumb and page, tab,
region, label, and button templates, the same as for the form on a table. Again, it was nice of the form wizard
to create all these elements for you.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

127

Master–Detail Report and Form
One of the most popular features in APEX is the Master Detail Form wizard. With a single, simple wizard,
you can quickly create a report and corresponding forms to manage data stored in a master–detail fashion.
Let’s use this wizard to create a report and forms for the TICKETS and TICKET_DETAILS tables.

Creating a Master–Detail Report and Form
First, you create the report and form on application pages 200, 210, and 220. Because you don’t yet have
those pages created, the wizard does that for you.

1. Navigate to the Application Builder home page for your application.

2. Click the Create Page button in the upper right of the screen.

3. Select Form and click Next.

4. Select Master Detail Form and click Next.

5. See Figure 6-24. Set Table/View Owner to your schema. Set Table/View Name
to TICKETS (table). When the page refreshes, all the columns from the table are
selected by default. Click Next.

Figure 6-24. Creating the master page

ChApter 6 ■ FOrms And repOrts: the BAsiCs

128

When dealing with a master–detail relationship, you normally have a foreign key between the detail and
master tables. However, that may not always be the case. At the detail table step, the wizard allows you to
choose whether to show only tables that are related via a foreign key.

In this case, the tables are indeed linked, so you can leave Show Only Related Tables set to Yes.

6. Select TICKET_DETAILS for Table/View Name. When the page refreshes, make
sure the following columns are moved to the Selected area to the right. You
should end up with results like those in Figure 6-25.

• TICKET_DETAILS_ID

• TICKET_ID

• DETAILS

• CREATED_BY

• CREATED_ON

• ATTACHMENT

Figure 6-25. Defining the detail table

ChApter 6 ■ FOrms And repOrts: the BAsiCs

129

7. Click Next.

8. Set Primary Key Type for the master table to Select Primary Key Column(s).
For Primary Key Column 1, select TICKET_ID (Number).

9. Set Primary Key Type for the detail table to Select Primary Key Column(s).
For Primary Key Column 1, select TICKET_DETAILS_ID (Number).

10. Click Next.

11. Set Primary Key Source to Existing Trigger for the master table, and
click Next.

12. Set Primary Key Source to Existing Trigger for the detail table, and
click Next.

13. Set Include master row navigation? to Yes, as shown in Figure 6-26. Set Master
Row Navigation Order to CREATED_ON, and click Next.

Do not click Finish at this point.

Figure 6-26. Defining master-row navigation options

www.allitebooks.com

http://www.allitebooks.org

ChApter 6 ■ FOrms And repOrts: the BAsiCs

130

14. Set Build Master Detail with to Edit Detail on Separate Page, and click Next.

15. On the next page, set the items to the values shown in Figure 6-27.

Figure 6-27. Specifying page attributes

16. Set Breadcrumb to Breadcrumb.

17. Once the region refreshes, in the Create Breadcrumb Entry section, set the
items to the values shown in Figure 6-28.

Figure 6-28. Creating a breadcrumb entry

ChApter 6 ■ FOrms And repOrts: the BAsiCs

131

18. Click Next.

19. Set the Navigation Preference in Figure 6-29 to Create a new navigation menu
entry. When the page refreshes, enter Tickets for New Navigation Menu Entry
and leave the Parent Navigation Menu Entry set to - No parent selected -
then click Next.

Figure 6-29. Setting navigation options

20. Confirm your selections, and click Create.

When the wizard completes, you have a working master–detail form on the TICKETS and TICKET_
DETAILS tables, plus a report on the TICKETS table. This is perhaps one report more than you expected,
but APEX knows that in most cases, you need the report to select the master–detail record to be edited, so
that report is created at the same time for convenience. The Master Detail Form wizard created one report
and two forms, plus the links and branches for navigation and the processes for performing database
transactions. The Tickets report has a link to the Tickets form, which allows editing of ticket master data and
lists ticket details. The Ticket Details region on the Manage Tickets page has an Edit link to the Ticket Detail
modal dialog, where the user can add, update, or delete ticket detail information. All the items, buttons,
processes, and even the column links were created by the Master Detail Form wizard.

Again, although you can build a master–detail form and report manually, the wizard is much faster
and certainly more efficient. Now, let’s make some adjustments to the report and the forms to suit your
requirements.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

132

Modifying a Master-Detail Report
Next, let’s modify the report to add CSV export capabilities, change the sorting options, and modify the date
format mask. Then we’ll clean up the two edit forms. Here are the steps:

1. Edit Page 200 of your application.

2. In the Rendering tab of the Tree Pane, highlight all columns of the Tickets
report except for TICKET_ID and DESCR, as shown in Figure 6-30.

Figure 6-30. Choosing to edit report attributes

Figure 6-31. Editing column attributes

3. In the Properties Editor, navigate to the Sorting attribute group and set
Sortable to Yes.

4. Select the DESCR column of the report and in the Properties Editor, change the
Type to Hidden Column. See Figure 6-31.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

133

5. In the Rendering tab of the Tree Pane, click the Tickets report’s Attributes child
node.

6. In the Properties Editor, navigate to the Pagination attribute group and set
Partial Page Refresh to Yes.

7. In the Download attribute group, set CSV Export Enabled to Yes. Once the
section refreshes, set the following options, which you can also see in Figure 6-32:

• Separator: ,

• Enclosed By: “

• Link Text: Export to Excel

• Filename: tickets.csv

Figure 6-33. Selecting a date format mask

Figure 6-32. Setting report export options

8. In the Rendering tab of the Tree Pane, edit the CREATED_ON column by clicking
on its name.

9. In the Appearance attributes group, use the pop-up list of values to select
Monday, 12 January, 2004 as the Format Mask. Selecting it returns fmDay,
fmDD fmMonth, YYYY into the Number/Date Format field, as shown in
Figure 6-33.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

134

CSS and HTML formatting directives entered in the Column Formatting properties group are applied to
the report column when the page is rendered:

10. In the Column Formatting properties group, enter font-weight:bold for the
CSS Style field (Figure 6-34).

Figure 6-34. Choosing column formatting options

11. Edit the TICKET_ID column by clicking its name.

12. In the Export/Printing attributes group, set Include in Export / Print to No and
click Save.

13. Run the page to view your changes.

Note that when you sort an APEX report column by date, the report sorts based on the value of the
actual date, not the displayed value. This is a built-in feature of APEX. Also, when you export to Excel, the
TICKET_ID column isn’t part of the resulting CSV file, which is the result of your setting the Include in Export
option to No.

Next, remove STATUS_ID and replace it with the corresponding value, pulled into the report by a slight
adjustment to your query:

1. Edit Page 200 in your application.

2. Edit the Tickets report by clicking the region’s name in the Rendering tree.

3. In the Source attributes group, click the Code Editor button in the upper right,
near the SQL Query definition. This will expand an editor window, allowing you
to better edit the SQL statement.

4. Locate and open the file ch6_add_status_to_report.txt, which you can find
where you extracted the class files earlier, and copy the contents into Code Editor,
replacing all text that is currently there, and click OK to dismiss Code Editor.
See Figure 6-35.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

135

Now, we’ll reorder the columns in the report by using simple drag and drop. In this case, we want to
move the STATUS column just between the TICKET_ID and SUBJECT columns. You can do this as follows:

5. In the Rendering tree, click and drag the STATUS column from the bottom of the
list and drop when the indicator shows its position to be between the TICKET_ID
and SUBJECT, as shown in Figure 6-36.

Figure 6-35. Pasting the new query text into Code Editor

Figure 6-36. Using drag and drop to re-order columns in a report

6. Save your changes.

Run the application to see the changes to the Tickets report. You should see results like those in
Figures 6-37 through 6-39. The Created On and Status values are now more readable, and you can sort by
column by clicking the column heading.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

136

Figure 6-37. The Tickets report

Figure 6-38. The Manage Tickets form

ChApter 6 ■ FOrms And repOrts: the BAsiCs

137

Session State
Next, let’s add a Search field to the report to allow users to filter for a specific ticket they may be interested in.
Before we do, here’s a brief explanation of session state to help you understand how APEX keeps track of the
values associated with a user’s session.

Understanding Session State
Session state is what allows APEX to keep track of all the values that belong in a particular user’s APEX
session. Session state is particularly useful for keeping track of values as a user moves from page to page in
the application.

Unlike a stateful database application, where a connection is maintained continuously and all values
are retained until changed or removed or until the session ends, an APEX application doesn’t maintain a
continuous connection to the database. APEX is a stateless system—the APEX engine generates HTML pages
based on directives stored in the APEX repository. Each page-rendering is a stateless transaction. An APEX
session ties the stateless HTML pages together.

Figure 6-39. The Ticket Details form

ChApter 6 ■ FOrms And repOrts: the BAsiCs

138

An APEX session is logically and physically distinct from the underlying database session. A database
session is stateful, and an APEX session is stateless. To illustrate the difference, think of a database session
as a phone call on a land line. The parties are connected for the duration of the conversation. Both parties
have to invest resources to carry on a conversation. Even if no one is talking, the connection—and the link
between the two parties—remains, as shown in Figure 6-40.

Figure 6-40. Database session communication

Think of an APEX session as a text message. The parties aren’t directly connected; they push
information in one direction at a time, even if the communication is an entire conversation via a series of
texts. Figure 6-41 illustrates APEX stateless session communication.

Figure 6-41. APEX session communication

Sharing Database Connections
Multiple APEX users can share the same database connection. There is a one-to-many relationship between
APEX users and database sessions. This is why APEX can scale as well as it does—it doesn’t need dedicated
database sessions, only a database session to use to process a request from a user.

APEX, being stateless, must rely on an external mechanism to manage session state. The APEX engine
has a built-in session-state management component. This session-state management is an integral part of
APEX—it can’t be disabled or circumvented.

Each APEX user is assigned a unique session identifier. Session-state management functions the same,
regardless of how the user authenticates to the system—APEX authentication, database authentication,
custom authentication, or public user. Yes, even unauthenticated users are assigned a session identifier.
By default, APEX purges inactive sessions older than 24 hours every 8 hours. APEX session-state values
are stored in a table in the database. The APEX engine recognizes the user by their session identifier and
retrieves the appropriate set of session-state values for the user’s session.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

139

The values of all APEX items, both page items and application items, are tied to this unique session
identifier. This identifier is referred to as the APP_SESSION_ID. You can see the session identifier in the URL of
most pages in an APEX application. It’s highlighted in Figure 6-42.

Figure 6-42. APEX session identifier in an APEX URL

Setting and Retrieving Session State
Session state is set by user-input items, computations, processes, and PL/SQL code. In PL/SQL, when within
an APEX process, you can set an item to be equal to a value, like so:

:P1_ITEM_NAME := 'some value';

In PL/SQL, when in a stored procedure, you can use the apex_util.set_session_state procedure to
set a value in session state, as follows:

 apex_util.set_session_state('P1_ITEM_NAME', 'some value');

The syntax to retrieve session state for an item varies according to where you’re referencing the item.
In templates or regions, tabs, menus, or lists, use the following substitution-string syntax (and don’t

forget the trailing dot!):

&P1_ITEM_NAME.

Use the following syntax in SQL statements:

:P1_ITEM_NAME

From PL/SQL, use one of the following two options, depending on what type of block or program unit
you’re in:

Anonymous PL/SQL block: :P1_ITEM_NAME.
PL/SQL Unit Called from APEX: V('P1_ITEM_NAME')

Within conditions, use this syntax:

P1_ITEM_NAME

■ Note the V function just mentioned is an ApeX-provided function that retrieves the session-state value
of an ApeX item. exercise caution when using this function, because using it in a stored program unit could
introduce performance issues.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

140

Viewing Session State
To view session state, click the Session link on the Developer toolbar. You should see a page like that shown
in Figure 6-43. Then use the Page, Find, and Views parameters to view session state for the application. The
drop-down View menu shown in Figure 6-44 allows you to view Page Items, Application Items, Session State,
Collections, and All of the Above.

Figure 6-43. Viewing the session state of Page Items

ChApter 6 ■ FOrms And repOrts: the BAsiCs

141

APEX Items
There are two types of APEX items: page items, which are displayed to the user on a page, and application
items, which hold values in an application but aren’t displayed. When referencing item values of either type
in queries, you should use bind variables. You may also want to reference some of the built-in items that are
available.

Figure 6-44. Choosing to view session state for all items in the application

ChApter 6 ■ FOrms And repOrts: the BAsiCs

142

Page vs. Application Items
APEX page items are the UI controls that let users view and enter data—Text Field, Textarea, Select List,
Checkbox, and so on. Page items are associated with a specific page and have UI properties associated
with them; the item is displayed to the user (or not) according to the UI properties. Figure 6-45 shows
the available APEX page item types, as displayed as part of the components gallery. See the APEX
documentation for more information on page item types and their attributes.

Figure 6-45. APEX page item types

Application items aren’t associated with a page and have no UI properties. They hold values in an
application that are essential but are not necessarily displayed. You can use an application item much like
a global variable. For example, you may need to calculate sales tax based on the state the user lives in. You
could read that sales tax percentage from a table when the user logs in and keep the value in an application
item for use throughout the user’s session.

The Importance of Bind Variables
When referencing APEX item values, particularly in SQL queries in your APEX application, it’s important to
think about SQL security basics, including SQL injection. Consider the example of an online form that allows
a user to sign on with a username and password, which ultimately executes this query:

SELECT COUNT(*) FROM users
WHERE username = '&username'
 AND password = '&password'

If you enter this password

I_dont_know OR 'x' = 'x

the resulting SQL is

SELECT COUNT(*) FROM users
WHERE username = 'SCOTT'
 AND password = 'I_dont_know' OR 'x' = 'x'

ChApter 6 ■ FOrms And repOrts: the BAsiCs

143

This SQL statement erroneously returns 1, indicating True, rather than No data found. The user is
allowed in! Not good. To prevent the injection of unintended SQL, use bind variables in the SQL query, like so:

SELECT COUNT(*) FROM users
WHERE username = :USERNAME
 AND password = :PASSWORD

Now try entering the following as your password:

I_dont_know OR 'x' = 'x

Unless this entire string is specifically your password, the database returns No data found. Your
attempt to sneak past the login fails.

We recommend the use of bind variables whenever possible. They prevent SQL injection and improve
SQL performance.

Built-In Items
APEX includes several built-in items for referencing key APEX application-wide session-state values. These
are set automatically by APEX and are available for reference by the developer throughout APEX. The most
common of these are as follows:

• APP_ID: The application identifier of the currently running application

• APP_ALIAS: The application alias of the currently running application

• APP_USER: The currently signed-on user

• APP_SESSION: The session identifier of the currently signed-on user

• APP_PAGE_ID: The currently running page identifier

APEX URL Syntax
Every APEX page is a call to the APEX engine. Every APEX URL is really a call to a specific page and passes
various parameters. Figure 6-46 shows the URL syntax.

Figure 6-46. APEX URL syntax

ChApter 6 ■ FOrms And repOrts: the BAsiCs

144

f?p is the call to the f PL/SQL procedure passing the argument p. The argument is actually a
concatenation of nine arguments combined into one, delimited by a colon. The nine elements of the p
argument are the same for all APEX page requests. You may omit one or more of the arguments, but you
must include the colon delimiters as placeholders.

The elements that form the p argument are as follows:

• APP_ID: The application number or alias

• APP_PAGE_ID: The page number or alias

• APP_SESSION: The APEX session identifier

• REQUEST: The HTML request

• DEBUG: A debug flag, set to YES or NO or omitted to use the current value of the
debug flag

• Clear Cache: A list of pages for which to clear the cache

• Item names: A list of APEX item names, separated by commas

• Item values: A list of APEX item values, separated by commas, that correspond in
order to the items specified in the list of item names

• Printer Friendly: A flag that determines whether the page is rendered in Printer
Friendly mode

It’s easiest to understand the APEX URL syntax by looking at a few examples. Table 6-1 shows several
examples and explains them.

Table 6-1. APEX URL Examples

f?p=&APP_ID.:10:&APP_SESSION.:::10 Calls page 10 of the current application using the current
session and clears the session cache for page 10

f?p=&APP_ID.:5:&APP_
SESSION.::NO::P2_ID:1234

Calls page 5 of the current application using the current
session, not in Debug mode, setting the value of P2_ID to 1234

f?p=&APP_ID.:5:&APP_SESSION.::YES Calls page 5 of the current application using the current session
in Debug mode

As you can see, the APEX URL not only supplies directions to the server, but is also your key to what
page is being requested, with what request, and with what values. So, how does this URL syntax tie in to your
work on the Help Desk application?

APEX applications store all values in an APEX session, which is securely bound to a specific user
and user session. Values stored in this user session can easily be set or read by a developer. Any item—
application or page—can be easily referenced from anywhere within your APEX application. Values can be
referenced and passed to APEX as part of the p parameter so as to control which APEX page is rendered and
what values are displayed on that page.

As the volume of data in your system grows, you need a quick way to sort through it and control what
data is passed to what page. You can add a page item and then use the value of that item to filter the SQL
statement for the report on page 200 of the application. In fact, an item in APEX can be referenced in a SQL
or PL/SQL region, as in the predicate of a query, by using the bind variable syntax (:P1_ITEM_NAME), and as
part of the APEX URL.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

145

Getting back to the wizard-generated Tickets report, you can apply what you just learned about session
state, APEX items, and the APEX URL to add a new item called P200_SEARCH that the user can use to filter the
report. After you make these report modifications, take a closer look at the components and attributes of an
APEX report.

Searchable APEX Reports
Reports with Edit links let users scan a list of rows and choose one to modify. Scanning works well for reports
that are short, but when reports are long, especially more than a page or two, it’s time to add some search
functionality to help a user quickly zero in on a record to edit.

Creating a Searchable APEX Report
You’ve already modified the Tickets report generated by the Master Detail Form wizard to add sorting, CSV
export capability, and a readable status value. As generated, the report has an Edit link on the first column,
which navigates to a Ticket—Ticket Details master–detail form. For the user to find the correct ticket to edit,
you need a search function. In the next series of steps you will add a search item and a Go button to activate
the search, and you will modify the report query to filter on the search value. We’ll use two different methods
to place the items in the grid layout. Know that both methods work equally well; which you use depends on
which you’re more comfortable with. First, let’s create the search field:

1. Edit Page 200 of the application.

2. Create a new item in the Tickets region by right-clicking the region name and
selecting Create Page Item.

3. In the Properties Editor, enter P200_SEARCH for the Name and set the Label to
Search, as shown in Figure 6-47.

Figure 6-47. Setting the attributes of the newly created item

ChApter 6 ■ FOrms And repOrts: the BAsiCs

146

4. In the Settings properties group, set the value of Submit When Enter pressed
to Yes.

Although you just set the item attributes so that the page is submitted when the Enter key is pressed,
it’s still a good practice to provide a way to submit the page using the mouse. Next, you’ll use the component
gallery and drag and drop to create a new button that, when clicked, processes the item value, stores it in
session state, and then reloads page 200:

5. In the Component Gallery at the bottom of the screen, select Buttons as the
component type. Click and drag the Text button so that it is positioned directly
beside the P200_SEARCH item you created in the previous steps, as shown in
Figure 6-48.

Figure 6-48. Creating a Go button for the search function

6. In the Properties Editor, enter P200_GO as the Button Name and Go as the Label.
Leave all the other attributes alone.

Next, you’ll adjust the report query to apply the P200_SEARCH filter. You’ll add a line to the query
predicate that uses the value stored in P200_SEARCH as a filter:

7. Edit the Tickets region definition by clicking its name in the Rendering tree.

8. Click the Code Editor button in the upper-right portion of the SQL Query
attribute.

9. Append the following line to the end of the query, and click OK:

AND UPPER(subject) LIKE '%'||UPPER(:P200_SEARCH)||'%'

10. Save and Run your report. Remember to test both the button and pressing Enter
while editing the search field. Both should filter the report correctly.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

147

Adding Reset Pagination
Any time you add a search item to a page, it’s a very good idea to also add a Reset Pagination process. This
prevents the APEX reporting engine from losing its place in a result set. In this case, there is only one way to
create the process, as there are no process components in the Gallery:

1. Edit Page 200 of the application.

2. Navigate to the Processing tab of the Tree Pane.

3. Right click on the Processing node of the tree and select Create Process from
the context menu.

4. In the Properties Editor, set the Name to Reset Pagination Process and select
Reset Pagination as the Type, as seen in Figure 6-49.

Figure 6-49. Specifying process options

5. Save and Run the application.

The search function should work both when the user presses Enter and when the user clicks the Go
button. But let’s go one more step and alter the Subject column so the search term is highlighted in red:

1. Edit Page 200 of the application.

2. Navigate to the Rendering tree and edit the Subject column by clicking its name.

3. In the Properties Editor, find the Column Formatting attributes group and enter
&P200_SEARCH. in the Highlight Words element. Make sure you include the
period (.) at the end. If you forget it, the variable won’t be parsed correctly, and
therefore the value won’t be highlighted.

This process uses APEX session state to indicate that the value the user entered into P200_SEARCH
should be used to highlight that same text in the Subject column. Continue as follows:

4. Save and Run your application.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

148

Now, when you enter a search value, the matching rows are returned with the search term highlighted
in red. In just a few minutes, you’ve created a sortable, searchable report for your Help Desk system. Let’s
look at what the report looks like behind the scenes. Figure 6-50 shows the components as seen from the
various tabs of the tree pane.

Figure 6-50. The searchable report as seen from the various tabs of the tree pane

Looking Behind the Scenes—APEX Report
Let’s take a closer look at the components and attributes of the Tickets report. Edit page 200 to view the
Rendering, Processing, and Shared Components tabs of the Application Builder. In the Rendering tab, you
have a single Tickets region that contains report columns, the two items you just added for search capability,
and a Create button. Click the Tickets region name to select it. Now, in the Properties pane, you can see the
details shown in Figure 6-51.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

149

Here you see that the region type is Classic Report. The source for this region is your SQL query on
the TICKETS table with the modified WHERE clause to add the filter on the P200_SEARCH item, referencing
P200_SEARCH as a bind variable. You can use the Code Editor button to get a better view of the SQL statement
if you like.

By clicking the Attributes child node in the Rendering tree at the left of the page, you are able to view
and edit the visual attributes of the report region. Also, in the Rendering tree you can see the list of report
columns.

By selecting one (or many) of the columns, you can adjust the heading, column width, column
alignment, and heading alignment; you can also decide whether the column is shown, whether a sum
is required, and whether you want to enable sorting on the column. The columns may be reordered by
dragging and dropping them into the order in which you want them.

In the Shared Components tree, you see the expected objects for the navigation, the breadcrumb, and
the page, as well as the region, report, label, and button templates. It’s nothing new, but be glad the wizard
has built these for you.

Next, let’s focus on the Tickets and Ticket Details forms, the other components generated by the Master
Detail Form wizard.

Figure 6-51. The Tickets report region source with the search filter

ChApter 6 ■ FOrms And repOrts: the BAsiCs

150

Looking Behind the Scenes—APEX Master–Detail Forms
Edit page 210 to view the Page Rendering, Page Processing, and Shared Components regions of the
Application Builder. You should see results similar to those shown in Figure 6-52.

Figure 6-52. Master Detail page as shown from the various tabs of the tree pane

In the Rendering tab, you have two After Header processes, a Manage Tickets HTML region that
contains your form items, and a Ticket Details report region.

The two After Header processes, Fetch Row from TICKETS and Get Next or Previous Primary Key Value,
do exactly what their names imply. The Fetch Row from TICKETS process fetches a row from the TICKETS
table for display in the form when the page passes a TICKET_ID. The Get Next or Previous Primary Key Value
process gets the next or previous TICKET_ID value in the series and fires in conjunction with the Next and
Previous buttons on the master–detail page.

The Manage Tickets region holds an APEX item for each of the TICKETS columns you selected to include
in the master–detail form, as well as buttons for cancel, delete, save, create, next, and previous operations.

The Ticket Details region is a report region that displays the ticket details and a Create button, which
redirects you to page 220 in order to create additional ticket details.

In the Processing tab, you see two After Submit branches that return you to this same page, an After
Submit P220_TICKET_DETAILS_ID computation, two processes (Process Row of TICKETS and Reset Page),
and an After Processing branch to page 200. The After Submit computation gets the next TICKET_DETAILS_ID
when you click the Create button in the Ticket Details region. The new TICKET_DETAILS_ID is passed to
page 220, the Ticket Details form. The Process Row of TICKETS process performs the database DML
operations for insert, update, and delete operations on the TICKETS table. The Reset Page process resets
(clears) the elements of the page when the Delete button is clicked. The After Processing branch to page 200
redirects the user to page 200, your TICKETS list, on successful processing.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

151

The Shared Components region includes the by-now familiar APEX elements for your page tabs, lists of
values, breadcrumbs, and templates.

Moving to page 220, the Ticket Details form, in the Application Builder, you will see elements that look
similar to those for the Manage Tickets form on page 210 (see Figure 6-53).

Figure 6-53. The Ticket Details form as shown from the various tabs of the tree pane

The Rendering tab includes an After Header Fetch Row from TICKET_DETAILS process, an HTML
region that contains items for each of the TICKET_DETAILS columns you selected to include in your master–
detail form, and buttons for processing.

The Processing tab includes a Process Row of TICKET_DETAILS process for handling inserts, updates,
and deletes on the TICKET_DETAILS table, a Reset Page process to clear the rows on a Delete transaction,
and a Go to Page 210 branch that returns the user to the Tickets page upon completion of a Ticket Details
transaction.

The Shared Components region on the Ticket Details page includes your page tabs, breadcrumbs, and
templates.

Wow! The Master Detail Form wizard created a lot—a fully functional report with master–detail forms,
all with no code written on your part. This master–detail example underlines the time-saving value of the
APEX wizards in generating APEX components, particularly when creating more complex and multipage
components for an application.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

152

More on APEX Forms
When creating forms, the APEX wizards do about 80 percent of what you want them to do. The last 20
percent of fine tuning is up to you, the developer. In this section you will make a number of small changes to
the Manage Tickets and Ticket Details forms, with the overall goal of increasing usability.

Item Layout
APEX 5.0 provides two ways to adjust item layout: adjusting certain item attribute settings, and dragging
items in the tree view. You’ll use both of these methods to adjust the Manage Tickets and Ticket Details
forms.

In many of the older themes, APEX laid out form items using standard HTML tables. This was
somewhat limiting, as the rows and columns of a table are fairly fixed in terms of layout. Using the new
Universal Theme, APEX has introduced the idea of a more loosely defined grid layout. Instead of HTML
tables with rows and columns, DIV elements are used to encapsulate each item.

Think of a grid as a coordinate system where items are placed either next to one another or above one
another. This grid layout may seem limiting, but you can rearrange items using the grid attributes of items. In
this section, you will use the grid attributes of the items on your page to move the Assigned To, Created On,
and Created By items to a single row.

Begin adjusting the Manage Tickets form layout by altering the item P210_CREATED_ON so it’s
automatically populated with today’s date. Then, set it so it always displays in read-only mode, preventing
users from making any changes:

1. Edit Page 210 of the application.

2. Edit the item P210_CREATED_ON by clicking its name.

3. In the Properties Editor navigate to the Default attribute group, as shown in
Figure 6-54, set Type to PL/SQL Expression and enter SYSDATE as the
Default Value.

Figure 6-54. Specifying a default value for a date

ChApter 6 ■ FOrms And repOrts: the BAsiCs

153

4. In the Read Only attribute group seen in Figure 6-55, set Type to Always.

Figure 6-55. Setting the read-only condition

You’re also going to alter P210_CLOSED_ON. In order to reduce errors, you can use a little-known HTML
attribute to make the actual input field read-only. The user is then forced to use the date picker pop-up:

5. Edit the item P210_CLOSED_ON by clicking its name.

6. In the Appearance attribute group, enter 12 for Width.

7. In the Advanced attribute group, add the following text immediately after the
existing text in the Custom Attributes field (as shown in Figure 6-56):

readonly="readonly"

Figure 6-56. Setting the width and adding an HTML form element

8. Click Save.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

154

Placing Multiple Items in the Same Row
Now, let’s rearrange the items on the page so they aren’t in a single column but rather are arranged with
multiple items are in the same row:

1. Edit Page 210.

2. Using your mouse, click and drag P210_CREATED_BY in the grid layout so it
will be placed in a new grid position to the right of P210_CREATED_ON. As you
drag a component around the grid, a yellow box indicates an area where it can
be dropped. There is also a position indicator, in the form of a grey box, that
indicates the current drop position of the component, as shown in Figure 6-57.

Figure 6-57. Repositioning P210_CREATED_BY by clicking and dragging the component

3. When you’ve positioned the fields correctly, the grid layout looks like Figure 6-58.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

155

Figure 6-58. The repositioned component in the grid layout

Figure 6-59. The three repositioned components in the grid layout

Now you need to make sure the Assigned To, Created On, and Created By fields are displayed on the
same line:

4. Using the same techniques you just learned, reposition P210_ASSIGNED_TO
so that it is directly before P210_CLOSED_ON. When all of the components are
positioned correctly, the grid layout will look as shown in Figure 6-59.

5. Click Save.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

156

Implementing LOVs

Next, you’ll tie the lists of values (LOVs) that you created in Chapter 4 to the P210_ASSIGNED_TO and P210_
CREATED_BY items on the form:

1. Edit Page 210 of the application.

2. Edit the item P210_ASSIGNED_TO by clicking its name.

3. In the Identification attribute group, set Type to Select List.

4. In the List of Values attribute group (see Figure 6-60), set Type to Shared
Component, List of Values to TECHS, Display Extra Values to No, Display Null
Value to Yes, and enter - Select a Tech - for Null Display Value.

Figure 6-60. Setting LOV attributes

5. Edit the item P210_CREATED_BY by double-clicking its name.

6. In the Identification attribute group, set Type to Select List.

7. In the List of Values attribute group (see Figure 6-60), set Type to Shared
Component, List of Values to USERS, Display Extra Values to No, Display Null
Value to Yes, and enter - Select a User - for Null Display Value.

8. Save and Run the application.

http://dx.doi.org/10.1007/978-1-4842-0466-5_4

ChApter 6 ■ FOrms And repOrts: the BAsiCs

157

You should see results like those shown in Figure 6-61. Notice how the components are very small, even
though there seems to be a lot of white space.

Figure 6-61. The Manage Tickets form using the new field placement

Clicking the Show Grid button in the Developer Toolbar at the bottom of the page, and then hovering
your mouse over one of the field labels, will show that the label is taking up three columns of the grid, as
shown in Figure 6-62.

Figure 6-62. The Manage Tickets form with Show Grid turned on

ChApter 6 ■ FOrms And repOrts: the BAsiCs

158

The page default is for each label to take up three columns of the grid; when you place more than one
item on the same line, it forces the items to shrink to fit the space. We can fix this by adjusting the Label
Column Span setting. However, if you only adjust for the three labels in question, you’ll end up with form
elements that don’t line up with the rest of the form. In our case, we want to adjust the labels for all the
enterable components on the screen:

9. Edit the following together by using CTRL-Click (COMMAND-Click for Mac):

P210_SUBJECT
P210_DESCR
P210_ASSIGNED_TO
P210_CREATED_ON
P210_CREATED_BY
P210_CLOSED_ON
P210_STATUS_ID

10. In the Property Editor, navigate to the Grid attribute group, as shown in
Figure 6-63, set Label Column Span to 2, and click Save.

Figure 6-63. Altering Label Column Span to allow for expanded item size

ChApter 6 ■ FOrms And repOrts: the BAsiCs

159

11. Once again, run the application, and you will notice the difference in how
the items are laid out on the page. You should see results like those shown in
Figure 6-64.

Figure 6-64. Corrected layout for the Manage Tickets form

Master–Detail Cleanup
You need to make a few more minor tweaks to the master–detail report and form. Let’s start by hiding the
TICKET_ID column from the detail report and form. At the detail level, TICKET_ID is the foreign key and
should not be an editable item:

1. Edit Page 210 of the application.

2. Expand the Columns child node under the Ticket Details report node in the
Rendering tree.

3. Click on the TICKET_ID column and hide it by editing its Type attribute and
setting the value to Hidden Column.

4. Using multi-select, enable sorting for the DETAILS, CREATED_ON, and CREATED_BY
columns by setting the Sortable attribute to Yes, as shown in Figure 6-65.

Figure 6-65. Specifying whether sortable for columns

ChApter 6 ■ FOrms And repOrts: the BAsiCs

160

5. Lastly, edit the TICKET_DETAILS_ID column and change its Heading attribute to
Edit.

6. Click Save.

Finally, make a few small changes to the items on page 220:

1. Edit Page 220 of the application.

2. Edit the item P220_TICKET_ID.

3. In the Identification attribute group, set Type to Hidden.

4. Edit the item P220_DETAILS.

5. In the Appearance attribute group, set Height to 5.

6. Edit the item P220_CREATED_ON.

7. In the Default attribute group set Type to PL/SQL Expression, then enter
SYSDATE as the PL/SQL Expression.

8. In the Read Only section, set Type to Always.

9. Edit the item P220_CREATED_BY.

10. Set Type to Select List. In the List of Values attribute group, set Type to Shared
Component, List of Values to TECHS, Display Extra Values to No, Display Null
Values to Yes, and enter - Select a Tech - for Null Display Value.

11. Save your changes.

Since Page 220 is set up as a modal dialog, you cannot run the page directly. Instead, you’ll have to
navigate to either Page 200 or 210 to run the application.

Your master–detail report and form are now complete. Using the Master Detail Form wizard, you
generated a report and master–detail form on the TICKETS and TICKET_DETAILS tables. You modified the
report to contain a user-friendly status value, sortable columns, and your preferred date formats. You
modified the Manage Tickets and Ticket Details forms to order items on the page, use text areas, and select
lists. Along the way, you reviewed the APEX components that make up your report and forms, as well as the
form, report, and column attributes available for customizing forms and reports to suit your needs.

APEX Help
Providing help to end users is an often forgotten and typically tedious task. Developers typically take the
easy route and skip it altogether, or the task is minimized or cut at the end of a project. Although APEX can’t
magically incorporate help into your applications, it does make it a lot easier for you, as a developer, to do so.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

161

Adding a Help Text Region
The APEX Help Text region automatically displays any associated help text for a given page and its items. It
can be placed on any page, including a global page. Although you can choose a region template for a Help
Text region, there is no way to change the style of the actual text. As an example, let’s add a Help Text region
to page 210 as a sub-region to the master Edit region:

1. Edit Page 210 of the application.

2. Create a new Help Text region by navigating to the Regions pallet of the
Component Gallery and dragging the Help Text icon to the Sub Regions section
inside the Manage Tickets region, as shown in Figure 6-66.

Figure 6-66. Creating a Help Text region

3. In the Properties Editor, set the Name to Help.

4. In the Appearance attributes group, set the Template to Collapsible and then
click on the Template Options button to expand the Template Options pop-up.

5. Set the Default State to Collapsed and click OK.

6. Save and Run your application.

Notice that when you run page 210, you will see the region title Help rendered with a > next to it at
the bottom of the Manage Tickets region. The newly created Help region was created as a sub-region, and
therefore it appears within its parent region. Clicking the ➤ expands the region; thus, the help text is only
displayed when the user explicitly requests it. Currently, the Help region doesn’t have any help text. You seed
the item-level help text in the next section. You can add page-level help by editing the page definition and
entering text into the Help Text input of the Help section.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

162

Seeding Help Text
Notice that not all the items are shown in the Help region. This is because some help text was added to this
region when the UI Defaults were defined, but the other items’ help text is still empty. Help text defined in
the UI Defaults is automatically pulled into any form that is built using those defaults. You can manually add
help text by editing each item. You can also seed any APEX items that don’t have help text already assigned
using yet another APEX wizard.

1. At the upper right in the Application Builder, click the Utilities icon, as shown
in Figure 6-67, and select Application Utilities so as to go to the Application
Utilities home page.

Figure 6-68. Seeding item help

Figure 6-67. Locating the Application Utilities icon

2. In the Page-Specific Utilities region at right of the page, click Item Utilities.

3. Click Grid Edit of all Item Help Text.

The report here shows only those items that already have help text associated with them. However,
you can use one of the buttons on this form to seed all empty help text in your application with a single
default value. There is no perfect value with which to seed the help text, but something like “Need Help Text”
indicates that the help for that item needs to be entered:

4. Click Seed Item Help Text.

5. Enter NEED HELP TEXT for Default Help Text in the Seed Item Help section, as
shown in Figure 6-68, and click Apply Changes.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

163

The help text has been seeded, and you’re taken back to the main report. From here you can narrow the
items that are displayed and edit the help text directly:

6. In the Report Filter section at the top of the page, enter 210 for Minimum Page
Number, and click Go.

At this point, you’re viewing all the help text for any item on page 210 or greater in a single interface.
Feel free to change the values for any of the items on page 210 in order to see them in the Help region.

Once you’ve altered and saved your help, run page 210. Note that if you click the question mark icon
next to any individual item on page 210, a pop-up window appears, displaying the help specific to that item.

The APEX Help Text region automatically displays the help text for a given page and its associated items.
Display of the help text is managed by APEX behind the scenes. Although it isn’t very robust—there is no way
to alter the look and feel of the region with templates or otherwise—there is now no excuse for not adding
help to your application.

Declarative BLOBs
In Oracle, BLOB stands for Binary Large Object and is a data type designed to store binary files. APEX
has streamlined how you can manage BLOB columns with a feature called Declarative BLOBs. The APEX
wizards recognize a BLOB column and automatically alter the related APEX item and report so as to interact
seamlessly with the column. Why do you care about BLOB columns? Using BLOB columns allows you to
easily upload and download files, such as documents, spreadsheets, and images, into your applications.

Plan ahead when using the Declarative BLOBs feature. At design time, include these columns in tables
that will use Declarative BLOBs:

• FILENAME: Stores the actual file name that is used when a user uploads the file

• MIME_TYPE: Stores the type of the file so browsers know which application to launch
(Word for .doc, Excel for .xls, and so on)

• LAST_UPDATED: Stores the date the BLOB was last updated

• CHARACTER_SET: Stores the character set of the BLOB, which is essential for indexing
and processing data that resides within the BLOB

The first two columns are essential for reading data out of the BLOB when needed. APEX uses the
Number/Date format column attribute of the BLOB column to map these attributes to the BLOB column
stored in the database.

If you add a BLOB column after creating a report or form using a wizard, you have to manually set the
column or item properties in order to integrate BLOB processing.

Because you added a BLOB column to the TICKET_DETAILS table when you ran the SQL script, some
things have been done for you. But you still need to do several things to use Declarative BLOBs properly.
First, you have to map the FILENAME and MIME_TYPE columns to the form that is used to upload the
document, so that these details are saved in the database. Let’s address the form on page 220 first.

1. Edit Page 220 of the application.

2. Edit the item P220_ATTACHMENT. In the Settings section, you will see the fields
shown in Figure 6-69.

ChApter 6 ■ FOrms And repOrts: the BAsiCs

164

3. In the Settings attribute group, enter MIME_TYPE for MIME Type Column,
FILE_NAME for Filename Column, and Download for Download Link Text.

4. Click Save.

Next, alter the report on page 210:

1. Edit Page 210 of the application.

2. Edit the Ticket Details region by clicking its name.

3. Locate and open the file ch6_blob_report.txt, which you can find where you
extracted the class files from earlier, and copy the contents into the SQL QUERY
attribute, replacing all text that is currently there. See Figure 6-70.

Figure 6-69. Specifying BLOB settings

ChApter 6 ■ FOrms And repOrts: the BAsiCs

165

Notice the change in the last column in the select list. Using dbms_lob.getlength indicates to APEX
whether the ATTACHMENT BLOB column contains any data. If it does, the query returns a number greater than 0.

Now you need to alter the report column to display a link that allows the end user to download any
document that may have been uploaded:

4. Expand the Columns node under the Ticket Details node in the Rendering tree.

5. Edit the ATTACHMENT column, changing the Type attribute to Download BLOB.

6. In the newly visible BLOB Attributes attribute group, enter TICKET_DETAILS for
Table Name, ATTACHMENT for Blob Column, TICKET_DETAILS_ID for Primary
Key Column 1, MIME_TYPE for Mime Type Column, FILE_NAME for Filename
Column, and under Appearance enter Download for Download Text, as shown in
Figure 6-71.

Figure 6-70. Entering the report query with a BLOB column

ChApter 6 ■ FOrms And repOrts: the BAsiCs

166

7. Save your changes.

Run the application. Test the file upload and download capabilities by attaching a file to one of the
Ticket Details records and then downloading it from the report.

This ability to easily upload and download files in APEX is extremely useful in building web applications
where users need to upload and download data for whatever purpose. The Declarative BLOBs feature of
APEX makes it simple for developers to add upload and download capabilities to an application.

Summary
You’ve reviewed most of the APEX form and report types and walked through building various forms and
reports for your Help Desk system using the APEX form and report wizards. Along the way, you’ve learned
about APEX items, session state, the APEX URL syntax, adding help to APEX pages, and incorporating
upload and download functionality by using the Declarative BLOBs feature. That’s a lot to digest, but the
APEX wizards have done most of the work for you.

The common theme here is that the APEX form and reports wizards are huge time-savers for
developers, creating all the objects—items, buttons, branches, processes, and so on—needed for a working
form or report. You can then alter the created objects to quickly customize the form or report to suit your
needs.

Still, you haven’t strayed far from what APEX builds for you, and you’ve covered only the simplest types
of forms and reports. The next chapter will look at more-complex types of APEX forms and reports, also
generated by wizards.

Figure 6-71. Modifying the BLOB column attributes

167

Chapter 7

Forms and Reports: Advanced

This chapter will focus on more complex types of forms and reports; it will also introduce charts and maps.
Although these are more complex types of forms and reports, they’re most often created by using the APEX
form and report wizards.

In the sections that follow, you will learn how to use the APEX form and report wizards to add pages
to your Help Desk application in order to manage multiple tickets on a single page, allow some interactive
analysis of ticket data, and visualize tickets by date and status. To do so, you will create a tabular form, an
interactive report, a calendar, and a pie chart, each demonstrating one of the more advanced types of APEX
forms and reports.

Tabular Forms
Tabular forms allow users to edit both rows and columns of data at once, much like a spreadsheet. The
developer can choose a different element type for each column—text box, text area, select list, check box,
radio group, and so on. Users can make changes to multiple data elements and submit them as a single
transaction. APEX tabular forms handle inserts, updates, and deletes—all with no code!

The APEX wizards create all of the required elements for a fully operational tabular form. Like all APEX
forms, there is no logical relationship between items that make up a tabular form. Once the wizard creates
the items, they’re indistinguishable from other APEX page items and can be modified independently of one
another. However, I recommend exercising caution when making modifications to items generated by an
APEX wizard; doing so can cause the tabular forms to become inoperable.

You can opt to bypass the wizard and create your own tabular forms. As your application becomes more
sophisticated, you may find it more efficient to create forms manually. However, this book focuses on the
wizard approach.

Creating a Tabular Form
In this section you will create a new page that contains a tabular form based on the TICKETS table. The form
allows multiple tickets to be edited on the same page. You will then alter the display properties of the tabular
form’s columns. Proceed as follows:

1. Navigate to the Application Builder Home Page for your application.

2. Click the Create Page button at upper right on the page.

3. Select Form and click Next.

4. Select Tabular Form and click Next.

Chapter 7 ■ Forms and reports: advanCed

168

5. Select your schema for Table/View Owner, and then select TICKETS (table) for
Table/View Name.

6. Make sure that Allowed Operations is set to Update, Insert and Delete.

7. By default, Use User Interface Defaults and all the columns are already selected,
as shown in Figure 7-1. Click Next.

Figure 7-1. Selecting columns for a tabular form

8. Set Primary Key Type to Select Primary Key Column(s).

9. Set Primary Key Column 1 to 1. TICKET_ID (Number), and click Next.

10. Set Source Type to Existing Trigger and click Next.

11. Select all columns as Updatable Columns, as shown in Figure 7-2,
and click Next.

Chapter 7 ■ Forms and reports: advanCed

169

12. Enter 230 for Page and Manage Multiple Tickets for Page Name and Region
Title as shown in Figure 7-3.

13. Set Page Mode to Modal Dialog

14. Set Breadcrumb to Breadcrumb.

15. When the page refreshes, set Entry Name to Manage Multiple Tickets and
Parent Entry to Tickets (Page 200), as shown in Figure 7-4, and click Next.

Figure 7-2. Selecting updatable columns for a tabular form

Chapter 7 ■ Forms and reports: advanCed

170

16. For Navigation Preference, select Identify an existing navigation menu entry
for this page. When the dialog refreshes, set Existing Navigation Menu Entry to
Tickets and click Next.

17. Change the Add Row Button Label to Add Tickets.

18. Check your selections in the Confirmation scrollable region, as shown in
Figure 7-5.

Figure 7-4. Creating a breadcrumb entry for a tabular form

Figure 7-3. Identifying page and region attributes for a tabular form

Chapter 7 ■ Forms and reports: advanCed

171

19. Click Create.

Figure 7-5. Checking our choices in the Confirmation region

Chapter 7 ■ Forms and reports: advanCed

172

Modifying a Tabular Form
Your tabular form will work, but currently there is no way to navigate to it. First, you need to create a button
on page 200 that links to your new tabular form:

1. Edit Page 200 of the application.

2. Create a new button by dragging a Text[Hot] button from the Component Gallery
to the Create button position of the Tickets region, as shown in Figure 7-6.

Figure 7-7. Specifying button attributes

Figure 7-6. Dragging a new button to the Tickets region

3. Enter MANAGE_MULTIPLE_TICKETS for Button Name and Manage Multiple
Tickets for Label, as shown in Figure 7-7.

Chapter 7 ■ Forms and reports: advanCed

173

4. In the Behavior attribute group, set Action to Redirect to Page in This
Application. Click the Options Dialog button next to Target. Once the Options
Dialog appears, set Page to 230, set Reset Pagination to YES, as shown in
Figure 7-8, and click OK.

Figure 7-8. Specifying button action attributes

5. Save and Run your application.

At this point, you should be able to navigate to your tabular form from page 200 by clicking the Manage
Multiple Tickets button.

However, now you need to make some cosmetic modifications so you can better control data entry and
the look and feel of the dialog.

First, let’s increase the size of the dialog window so we can see all the elements of the form:

1. Edit Page 230 of the application.

2. Select Page 230: Manage Multiple Tickets in the Rendering tab of the
Tree Pane.

3. In the Properties Editor set the dialog Width property to 1200 and the Height
property to 720.

4. Click Save.

Chapter 7 ■ Forms and reports: advanCed

174

Next, you’ll make some changes to the columns of the Tabular Form.

5. Expand the Columns node under the Manage Multiple Tickets node of the tree
in the Rendering tab.

6. Edit the TICKET_ID_DISPLAY column and set Type attribute to Hidden
Column.

7. Multi-select SUBJECT, DESCR, CREATED_BY, CREATED_ON, CLOSED_ON,
ASSIGNED_TO, and STATUS_ID and make sure their Sortable properties are set
to YES.

8. Multi-select the SUBJECT and DESCR columns.

9. In the Properties Editor, set Type to Text Area, Width to 16, and Height to 3.

10. Edit the ASSIGNED_TO column.

11. In the Properties Editor, set Type to Select List.

12. In the List of Values attribute group, set Type to Shared Component, List of
Values to TECHS, Display Extra Values to No, Display Null to Yes, and
enter - Select a Tech - for Null Display Value, as shown in Figure 7-9.

Figure 7-9. Specifying a LOV for the ASSIGNED_TO column

13. Edit the CREATED_BY column.

14. In the Properties Editor, set Type to Select List.

15. In the List of Values section, set Type to Shared Component, List of Values to
USERS, Display Extra Values to No, and Display Null to Yes, and enter - Select
a User - for Null Display Value, as shown in Figure 7-10.

Chapter 7 ■ Forms and reports: advanCed

175

16. Edit the STATUS_ID column.

17. In the Properties Editor, navigate to the Default attribute group and set Type to
PL/SQL Expression and enter get_status ('OPEN') for Default.

18. Save the edits you just made and then run your application. Note: Because page
230 is a modal dialog page, you will need to run it from the button you created on
page 200.

Figure 7-10. Specifying LOV attributes for the CREATED_BY column

Chapter 7 ■ Forms and reports: advanCed

176

Looking Behind the Scenes
Let’s take a look at what the Tabular Form wizard has created for you—the contents of your tabular form.
Edit page 230 to examine the various tabs of the Tree Pane. They should look similar to those shown in
Figure 7-11.

Figure 7-11. The various tabs of the Tree Pane for page 230

In the Rendering tab, APEX has created a Report region. But you created a form, didn’t you? Despite its
name, a tabular form is actually a SQL report with certain column-level options enabled and some processes
added to handle data manipulation.

In the Processing tab, in the Processing section, you see two processes: ApplyMRU and ApplyMRD.
These special types of processes handle the multiple-row inserts and updates (ApplyMRU) and deletes
(ApplyMRD) on the TICKETS table. These processes handle all DML operations on the TICKETS table for you.

APEX has also created validations for several of the columns, which are created automatically based on
the TICKETS table column definitions plus any UI Defaults defined on the TICKETS table.

In the Shared Components tab are the usual page and tab templates that are the defaults for your
application.

As you can see, the ApplyMRU and ApplyMRD processes make the difference between the Report
region being a static report region and being a fully functional tabular form. And it’s so much easier to let the
APEX wizard create all this for you!

Chapter 7 ■ Forms and reports: advanCed

177

Interactive Reports
Your ticket report is what’s called a classic report. It’s the original style of APEX report and still has practical
applications in a variety of situations where the requirement is for a simple list of data with no interactivity.
Most applications, including APEX itself, now employ the APEX interactive report, however.

Introduced in APEX 3.1, the interactive reports feature allows APEX to quickly and easily include
user-driven ad hoc capabilities in your applications. Interactive reports are greatly enhanced in APEX 5.0.
The beauty of APEX interactive reports is that they give the end user powerful ad hoc query capability with
exactly zero lines of code written by the developer. End users can customize the following:

• Searching

• Sort order

• Columns

• Breaking

• Highlighting

• Computations

• Aggregations

• Charts

• Group by

• Flashback time

• Saved reports

• Subscription (email notification)

Interactive reports are technically nothing more than a report type. The Create Report wizard steps are
similar to what we have already seen, and you will expend the same effort in building an interactive report as
you would for a classic report.

Classic reports can be easily converted to interactive reports. There is no way to revert from an
interactive report to a classic report, however. (But why would you want to?) The end-user features and
overall value of interactive reports are best illustrated with an example, so let’s add an interactive report to
your application.

Creating an Interactive Report
Interactive reports require nothing more than a SQL query. APEX handles the rest. You start by creating a
new page, menu item, and interactive report all at once on a view of your Help Desk data. Begin as follows:

1. Navigate to the Application Builder’s Home Page for your application

2. Click Create Page button in the upper right of the screen.

3. Select Report and click Next.

4. Select Interactive Report and click Next.

5. Enter 300 for Page Number and Analysis for Page Name and Region Name,
and set Region Template to Interactive Report.

Chapter 7 ■ Forms and reports: advanCed

178

6. Set Breadcrumb to Breadcrumb and, when the page refreshes, click Next.
See Figure 7-12.

Figure 7-12. Specifying the page number, name, and breadcrumbs for an interactive report

Chapter 7 ■ Forms and reports: advanCed

179

7. Set Navigation Preference to Create a new navigation menu entry. When the
page refreshes, it should look like Figure 7-13. Click Next.

Figure 7-13. Specifying navigation options for an interactive report

Chapter 7 ■ Forms and reports: advanCed

180

For this report you’re going to use the TICKETS_V view instead of the TICKETS table directly. The
view joins the TICKETS table to the STATUS_LOOKUPS table so you don’t have to do it manually later at the
column level:

8. Set the Source Type to Table and then select TICKETS_V (view) for Table /
View Name. Set Uniquely Identify Rows by to Unique Column, enter TICKET_ID
for Unique Column, and click Next (see Figure 7-14).

Figure 7-14. Entering a SQL SELECT statement for an interactive report

9. Click Create.

Chapter 7 ■ Forms and reports: advanCed

181

Running an Interactive Report
Run the application and navigate to the Analysis menu item. The page looks similar to that shown in
Figure 7-15. At first glance, the interactive report looks no different than any other APEX report. However, the
interactive report can perform a number of functions that a standard APEX report can’t.

Figure 7-15. Interactive report for tickets analysis

The interactive report has a built-in Search Bar, which is command central for the interactive report. All
of the end-user features are accessed through the Search Bar, which is located on the top of the interactive
report, in the standard location for a report search field. But this is so much more than just a search field! The
Search Bar includes the following:

• Finder drop-down: Represented by the magnifying glass, this feature allows the user
to select which column to filter on.

• Search field: A search field where the user can enter and find text strings.

• Report select list: A select list of all saved reports. This select list is visible only when
more than one saved report is available. We’ll talk about saved reports in a moment.

• Rows-per-page selector: A select list of number-of-rows options. This function is
turned off by default, because it’s also available from within the Actions menu.

• Actions menu: A menu of actions enabled for this report—the “interactive” options of
the interactive report.

Chapter 7 ■ Forms and reports: advanCed

182

To use the search field, type a string or phrase into it and click the Go button. The interactive report lists
only results that match values you entered in the search field.

To use the Finder drop-down, click the arrow next to the magnifying glass icon to the left of the Search
Bar. This action opens a menu of the report’s column names. Selecting a column name causes the search to
be performed on the selected column only.

To use the Report select list, select one of the Report list options to navigate to the selected report. To
use the rows-per-page selector, select the desired number of rows per page to display from the select list.

To use the Actions menu, click it to expand the menu of interactive reports actions, and then select the
desired action.

Restricting Functionality by Report
As the developer, you have control over which options on the Actions menu are available to the end user
by setting options at the report level in the Page Builder. You can also control which of the preceding
components are included on the Search Bar. The Search Bar options, shown in Figure 7-16, allow you to
include the Search Bar or not and to elect which elements of the Search Bar are visible to the user. This
controls end-user functionality at the report level.

Figure 7-16. Specifying Search Bar options

Chapter 7 ■ Forms and reports: advanCed

183

Figure 7-17. Specifying the options for the Actions menu

The Actions Menu toggles, shown in Figure 7-17, allow you to specify which Actions menu options
are available to the user. Of these, the Save Report, Save Public Report, and Subscription options are only
available to authenticated users. This is because APEX needs to know information about the authenticated
user to be able to save reports and send subscriptions.

Chapter 7 ■ Forms and reports: advanCed

184

Restricting Functionality by Column
Specific interactive report actions can also be restricted on a column-by-column basis. For example, you can
allow the report to be filtered, but not allow a specific column to be used in a filter. By editing report columns
in the Page Builder, you can declaratively enable or disable the hide, sort, filter, highlight, control break,
aggregate, compute, chart, group by, and pivot at the column level through the individual column’s report
attributes page, as part of the Enable Users To attribute group, as shown in Figure 7-18.

Figure 7-18. Specifying individual column options

You’ve examined the interactive report settings available to you as a developer at the report level and
at the column level. Now, let’s take a look at interactive report features from the end-user perspective. The
following sections examine using the key features of an interactive report as an end user.

Using the Column Heading Menu
When running an interactive report, the column headings contain functionality all their own and are
perhaps the fastest way to format a single column of a report. Figure 7-19 illustrates the interactive report
column-heading features. Clicking a column heading opens a column-level menu with icon-driven options
for quick sorting, removing the column from the report, adding a break on the column, searching, and
filtering on the selected column. The Search Bar in this menu allows the end user to search for and filter
directly on the values in that column. The Remove Column option lets the user quickly remove the column
from the report. To restore the column, the user must choose the Select Columns option of the Actions
menu. The Break option adds a break on the column.

Chapter 7 ■ Forms and reports: advanCed

185

Figure 7-19. Using the column-heading menu

If you look below the Filter text field, you will see a full list of distinct values that occur in the column.
Clicking any of these distinct values creates a filter on the column, showing only those rows that match the
selected value.

Searching by Column
The magnifying glass icon at the left end of the Search Bar is actually a list of the visible columns in the
report, which is helpful as a quick way to filter either on a specific column or on all columns. The selected
column is the column to which the search text applies.

Entering a value in the search field applies a filter to either all columns (the default) or the selected
column. Once a filter is applied, an option appears in the Control Summary region, as shown in Figure 7-20.
The Control Summary region is the area between the Search Bar and your report. This region appears only
when an action is applied to the interactive report and serves as a key to what actions are currently being
applied. The Control Summary region contains one line for each action applied. Interactive report actions
are additive: subsequent actions are applied in addition to the existing actions. The user can disable an
action by unchecking its check box. The user can remove the action by clicking the × icon for that action.
Clicking an action in the Control Summary region opens that action control for editing.

Figure 7-20. Control Summary region when open

Chapter 7 ■ Forms and reports: advanCed

186

The Control Summary panel can be toggled open or closed. You can minimize it by clicking the Close
(downward-pointing triangle) icon.

The closed Control Summary region, shown in Figure 7-21, can be expanded by clicking the Open
(rightward-pointing triangle) icon.

Figure 7-22. Finder drop-down menu

Figure 7-21. Control Summary region when closed

The Finder drop-down menu, accessible via the magnifying glass icon to the left of the Search Bar,
displays a list of all columns in the interactive report, as shown in Figure 7-22. Selecting one of the columns
limits the search function to that column.

Chapter 7 ■ Forms and reports: advanCed

187

Figure 7-24. Choosing a format option from the Actions menu

Figure 7-23. Actions menu

The Actions menu, shown in Figure 7-23, exposes an array of column-selection, filtering, and action
options. Expanding the menu further under the Format option reveals additional actions for sorting,
breaking, highlighting, computing new columns, aggregating, charting, and grouping. The expanded Format
menu is shown in Figure 7-24.

Chapter 7 ■ Forms and reports: advanCed

188

Selecting Columns
The Select Columns action, shown in Figure 7-25, allows the user to select which columns to display and to
reorder columns as desired. The shuttle control allows the user to easily add or remove columns using the
center arrows and to order the columns that are displayed by using the up and down buttons to the right of
the region.

Figure 7-25. Selecting columns

■ Note the select Columns action of an interactive report always controls which columns are displayed. If, as
a developer, you modify the sQL query to add a column to an interactive report, that new column won’t be visible
until the new column is moved from the do not display region to the display in report region of the shuttle.

Filtering
The Filter action allows the user to declaratively define filters based on the result of a number of operators.
A user can define multiple filters per report. Multiple filters are combined with the logical AND operator.
Filters defined through the Search Bar are combined with filters defined in the Filter action. Currently, there
is no provision in interactive reports to implement a logical OR for filters.

The Filter action offers a full set of filter operations for selection, as shown in Figure 7-26.

Chapter 7 ■ Forms and reports: advanCed

189

The Filter action supports both column filters and row filters. Column filters are applied to a single
column. The column filter options change interactively, depending on the type of the filtered column and
the selected operator. For example, if you select a date column, such as Created On, and then select the
Between operation, the Expression element now contains two fields, for the From and To of the between
clause. In this case, the fields each have a date picker for ease in entering the Date From and To values. The
end user can also construct a custom filter using the declarative Filter.

Figure 7-26. Applying a filter to an interactive report

Chapter 7 ■ Forms and reports: advanCed

190

Row filters allow the user to build filter conditions that are based on multiple columns in the same
row. A simple row filter for your Analysis report might be a filter for all tickets that were closed on the same
day they were opened. The Filter expression may be built declaratively using selections in the Columns
and Functions/Operators regions, shown in Figure 7-27, or may be entered manually. Within the Filter
expression, selected columns are represented by their letter alias.

Figure 7-27. Building a row filter

Chapter 7 ■ Forms and reports: advanCed

191

Sorting
The Sort interface allows the user to specify sorts on up to six columns in either ascending or descending
order and to specify whether NULLs are sorted first or last. The sort may be performed on both displayed and
non-displayed columns (see Figure 7-28).

Figure 7-28. Adding sorts to an interactive report

Adding Breaks
The Control Break action allows the user to define break formatting on up to six columns. The user specifies
the break column and whether the break is disabled or enabled. APEX automatically applies the declared
break formats to the report. Note that break columns appear in the Control Summary as separate entries,
letting the user enable, disable, or remove break columns individually. Figure 7-29 shows the Analysis report
with breaks applied on the Assigned To and Status columns.

Figure 7-29. Interactive report with control breaks applied

Chapter 7 ■ Forms and reports: advanCed

192

Highlighting
The Highlight action allows the user to find matching data and highlight it by row or column, specifying the
background and text colors for the highlight. The Highlight action interface is shown in Figure 7-30.

Figure 7-30. Adding highlighting with the Highlight action

The same operators that you saw in the Filter action apply here. The background and text colors may
be specified using either hex notation or the color palettes. The Highlight action appears in the Control
Summary region as a highlighted row.

Chapter 7 ■ Forms and reports: advanCed

193

Computing Columns
The user can define a new column as a computation based on existing columns and functions via the
Compute action interface, shown in Figure 7-31.

Figure 7-31. Computing a new interactive report column using the Compute action

The user may either declaratively or manually define the computed value. The declarative interface is
much the same as the row filter interface. Columns are specified in the computation as their letter aliases.
This option is quite powerful, because it allows the end user to build essentially any column they desire.

Chapter 7 ■ Forms and reports: advanCed

194

Adding Aggregates
The Aggregate action performs one of the following aggregation functions on a column:

• Sum

• Average

• Count

• Count Distinct

• Minimum

• Maximum

• Median

The selected column must be of data type NUMBER. The results are displayed at the end of the report.
Note that aggregate results are displayed only if the corresponding column is also displayed.

Adding Charts to Interactive Reports
The Chart action allows the user to display a dynamic Flash chart representation of the data in the report,
as shown in Figure 7-32. The chart representation of the data is displayed instead of the tabular data
representation. The display can be toggled by clicking the View Chart icon, as indicated in Figure 7-32.
Use the Edit Chart link to reenter the Chart action interface.

Figure 7-32. Interactive report pie chart

Chapter 7 ■ Forms and reports: advanCed

195

The following chart types are supported in an interactive report:

• Horizontal bar

• Vertical bar

• Pie

• Line

The simple Chart action interface, shown in Figure 7-33, allows the user to select the chart type and
assign a label column, a value column, a function, and a column to sort by.

Figure 7-33. Adding a chart using the Chart action

The user doesn’t have the full functionality of APEX charts within the Chart action, but the ease of
displaying these most common chart types is quite valuable.

Chapter 7 ■ Forms and reports: advanCed

196

Grouping
The Group By action allows the user to define groups and then aggregate functions on those groups, thus
letting the user declaratively define their own summary views of the report data. A sample result of using the
Group By action is shown in Figure 7-34.

Figure 7-34. Grouping using the Group By action

Like the Chart view, the Group By view of the data has a display icon in the center of the Search Bar, as
indicated in Figure 7-34. The user may display the data view, the Group By view, or, if defined, the Chart view
of the data by clicking the appropriate display icon.

Chapter 7 ■ Forms and reports: advanCed

197

Pivot
The Pivot action allows the user to define a pivot view of the data in the report, giving the user full control over
the columns to pivot, the columns to display as rows, and the columns to aggregate with one of the available
aggregate functions. A sample of the settings and the resulting Pivot report are shown in Figure 7-35.

Figure 7-35. A Pivot report generated using the Pivot action

Chapter 7 ■ Forms and reports: advanCed

198

Using Flashback
The Flashback action enables the user to flash back the database by the specified number of minutes to see
what the data looked like at that point in time. The option is built on the Oracle database FLASHBACK feature.
Database FLASHBACK must be enabled. The Flashback action asks for the number of minutes to flash back, as
shown in Figure 7-36.

Figure 7-37. Saving an interactive report using the Save Report action

Figure 7-36. Using the Flashback action

The length of flashback time is configurable. The maximum flashback period is based on the UNDO_
RETENTION parameter in the database, which is set to three hours by default.

Saving an Interactive Report
The Save Report action allows the user to save the current configuration of the interactive report as a named
report. If the end user is also an APEX developer, the user will see the Save As Default Report Settings option,
shown in Figure 7-37.

Chapter 7 ■ Forms and reports: advanCed

199

As a developer, you want to try to pre-create the versions of the report that you feel will be the most
widely used by the largest subsection of users. You may save the current report configuration as being either
the primary or the alternative default report settings, as shown in Figure 7-38. The primary report is the one
that any brand-new user sees by default when logging on to the system. If alternative default reports exist,
the user is able to choose them from the select list.

Figure 7-38. Setting an alternative saved report

Figure 7-39. Using the default Reports menu

Obviously you can’t pre-create every possible iteration of a report. Therefore, the user may save reports
as private reports. When a report is saved, it’s added to the Reports menu in the Search Bar, as shown in
Figure 7-39.

Chapter 7 ■ Forms and reports: advanCed

200

Resetting an Interactive Report
The Reset action, shown in Figure 7-40, restores the current report to the default settings. Any changes in
formation or result set (by filtering) are lost, unless, of course, the report is a saved report. It may then be
reinstated simply by selecting the report name from the select list.

Figure 7-40. Resetting an interactive report to its default settings

Getting Help
The Help action opens a window that contains interactive report–specific help, as shown in Figure 7-41. All
of the interactive report options are displayed in this Help window, regardless of whether they’re enabled for
the current report.

Figure 7-41. The Interactive Report Help page

Chapter 7 ■ Forms and reports: advanCed

201

Adding a Subscription
The Subscription action allows the user to email a report to designated email addresses on a scheduled
basis. The user enters the email address, subject, frequency, and start and end dates, as shown in
Figure 7-42. This action is available for authenticated users only. The email received is a searchable HTML
version of your report. Break formatting and highlighting aren’t preserved.

Figure 7-42. Subscribing to an interactive report

If a subscription for the current user is in effect, you can edit that subscription by using the Subscription
action again. The form then presents the current subscription attributes and allows the user to either change
or delete the subscription. The interface is exactly like that shown in Figure 7-42, the only addition being a
Delete button.

Report subscriptions can also be managed by a Workspace Administrator through the Administration
Home Page ➤ Tasks Menu ➤ Interactive Report Settings ➤ Subscriptions interface, as shown in Figure 7-43.

Figure 7-43. Managing subscriptions through the manage-subscriptions interface

Chapter 7 ■ Forms and reports: advanCed

202

Downloading
The Download action allows the user to download the current result set of their report in one of the
following formats:

• CSV

• HTML

• Email

• PDF

• XLS (MS Excel)

• RTF (MS Word)

The latter two formats require Oracle BI Publisher, which may require a separate license from Oracle.
The email option will only be available if your APEX administrator has configured APEX to integrate with
an external email server. Figure 7-44 shows the download options without and with BI Publisher. You can
specify which formats are available in the Download attributes region, as shown in Figure 7-45.

Figure 7-44. Choosing download options, without and with BI Publisher

Chapter 7 ■ Forms and reports: advanCed

203

Reports downloaded in CSV format are plain, comma-delimited data. The content and order of data in
the result set are retained in the CSV file, but break formatting and highlighting aren’t.

Reports downloaded in HTML format are a searchable HTML version of the result set, as shown in
Figure 7-46. Again, the result set content is preserved, but the break formatting and highlighting aren’t.

Figure 7-45. Specifying download attributes

Figure 7-46. The searchable HTML download of an interactive report

Chapter 7 ■ Forms and reports: advanCed

204

The email download is the same output as the HTML download, but delivered in an email. The XLS
and RTF download formats require integration with Oracle BI Publisher, which may require a separate
license from Oracle. The PDF output can be accomplished via either Oracle Rest Data Services, an
external Formatting Objects Processor (FOP), or BI Publisher. A complete description of the use of Oracle
BI Publisher to produce reports in these formats is beyond the scope of this book. See the Oracle APEX
documentation section “Advanced Printing Options and Configuration” for more details. If these options
aren’t configured for your installation, they won’t appear in the download options list.

Take some time to experiment with the features of the interactive report. If you get lost and need to start
over, simply click the Actions button and select Reset. The interactive report will be reset to its original state,
and all modifications that you made to it will be discarded.

Modifying an Interactive Report
Although an interactive report offers a tremendous amount of functionality, you may wish to limit which
features are available to your end users. Each feature of the interactive report can be disabled on a report-
by-report basis. In addition, you can set up default options for a specific report, making those available to all
end users.

Adding Attributes and Removing Columns
Let’s take another look at your interactive report. You can use a combination of interactive report end-user
actions and developer settings to achieve modifications. First, remove a column from the report and add a
sort attribute using the Actions menu:

1. Run the application and navigate to the Analysis menu item.

2. Click the Actions button to display the Actions menu.

3. Select the Select Columns option, as shown in Figure 7-47.

Figure 7-47. Selecting the Select Columns option

Chapter 7 ■ Forms and reports: advanCed

205

4. Move Ticket Id to the Do Not Display section of the shuttle, as shown in
Figure 7-48, by double-clicking its name.

5. Using the up and down arrows, reorder the remaining columns so that Status
appears after Subject and before Description, as shown in the Display in Report
section in Figure 7-48, and click Apply.

Figure 7-48. Selecting columns

Notice that the Ticket Id column is no longer displayed in your report and that the Status column
appears immediately after the Subject column.

Next, you can set your changes as default options for the interactive report. These options will be
applied for all end users who use the interactive report. The Save As Default Report Settings option is only
available to end users who are APEX developers:

6. Click the Actions button and select the Save Report item.

Chapter 7 ■ Forms and reports: advanCed

206

7. Set Save to As Default Report Settings, as shown in Figure 7-49.

Figure 7-49. The Save As Default Report setting

Figure 7-50. Saving a primary interactive report

8. The region immediately changes, allowing you to save the report either as the
primary default or as a named alternative. Make this one the Primary default, as
shown in Figure 7-50. Click Apply.

Chapter 7 ■ Forms and reports: advanCed

207

Now, create a named alternative default report that does a control break on the Status column:

9. Click the Actions button and navigate to Format ➤ Control Break, as shown
in Figure 7-51.

Figure 7-51. Selecting the Control Break action

10. Select Status in the first Column select list and make sure it’s set to Enabled, as
shown in Figure 7-52. Click Apply.

Figure 7-52. Applying a control break to an interactive report

Chapter 7 ■ Forms and reports: advanCed

208

11. Click the Actions button and select the Save Report option.

12. Set Save to As Default Report Settings, as shown in Figure 7-53.

Figure 7-53. Saving an interactive report as a default setting

13. The region immediately changes. This time, save the report as a named
alternative: select Alternative for Default Report Type, enter Tickets by
Status for Name, as shown in Figure 7-54, and click Apply.

Figure 7-54. Saving on interactive report as an alternate report

The toolbar at the top of the report now has a new Reports select list that contains both your default and
alternative reports, as shown in Figure 7-55.

Figure 7-55. Reports select list showing both the primary and named alternative reports

Chapter 7 ■ Forms and reports: advanCed

209

Selectively Enabling and Disabling Items
As a developer, you can selectively enable or disable items from the Actions menu. Doing so restricts which
options are available to the end user for a specific interactive report. Here’s an example to work through:

1. Edit Page 300 of the application.

2. Edit the Analysis report’s interactive report properties by clicking the Attributes
node in the Rendering tree.

3. Scroll down to the Actions Menu attributes group. Set Flashback and Save
Report to NO and set Subscription to YES, as shown in Figure 7-56.

Figure 7-56. Selecting Actions menu options

4. Save your changes.

Run your report again, and then click the Actions button to expand the actions menu. Notice that the
Flashback item is no longer present. And while we turned Save Report off, you can still save reports because
you’re logged in as a developer to the underlying workspace. Standard end users won’t see this option. You
should also see a new option for subscriptions.

Chapter 7 ■ Forms and reports: advanCed

210

Limiting an Action to Specific Columns
In addition to controlling which actions appear for an interactive report, you can get even more granular
and determine on which columns a specific action can be performed. Figure 7-57 shows the column-level
Actions settings for your interactive report. Proceed as follows:

1. Edit Page 300 of your application.

2. Expand the Columns node under the Analysis Interactive Report node in the
Rendering tree and select the Description column.

3. In the Enable Users To attribute group, set the Sort and Filter attributes to NO.

4. Save your changes.

5. Run Page 300 of your application.

Figure 7-57. Selecting column-level actions for an interactive report

6. Click the Actions button and select Format ➤ Sort. The Sort action interface
should look similar to Figure 7-58.

Chapter 7 ■ Forms and reports: advanCed

211

7. Notice that Description no longer appears as a column name in the list of
columns.

By default, the interactive report links to something called Single Row View. This view shows a read-only
region that contains all the details about a specific row. In this case, you may want to link back to the form
you created on page 210. In this case, you can alter the interactive report to use a more traditional page link
instead of the Single Row View. You do this by editing the Link Column attributes, as shown in Figure 7-59:

8. Edit Page 300 of the application.

9. Click on the Attributes node for the Analysis Interactive Report.

10. In the Link attribute group, set Link Column to Link to Custom Target.

11. Click on the Options Dialog button for the Target attribute.

Figure 7-58. Modified Select Column list

Chapter 7 ■ Forms and reports: advanCed

212

12. In the resulting dialog, make sure Type is set to Page in This Application, set
Page to 210, enter P210_TICKET_ID for the Name and #TICKET_ID# for the Value
on the first line, and then click OK (see Figure 7-59).

Figure 7-59. Setting the Link Column attributes

13. Save your changes.

Name and Value tell the link to pass the current ticket’s ID (identified by #TICKET_ID#) and assign it to
P210_TICKET_ID in session state.

Run page 300 of your application. You should now be able to drill into the details of any row by clicking
in the column with the Edit link.

Looking Behind the Scenes
Let’s look behind the scenes of the interactive report. You may be surprised to see that there is only a single
interactive report region in the Rendering tab, as shown in Figure 7-60.

Chapter 7 ■ Forms and reports: advanCed

213

The Processing tab contains no elements, and the Shared Components tab contains only the expected
elements.

This is the first case where you can’t easily re-create the interactive report using standard declarative
APEX elements. The additional functionality is from a collection of JavaScript functions, CSS, and HTML that
are all contained within the interactive report region type. Although you could build this from scratch, the
APEX interactive report is a huge timesaver.

Calendars
Sometimes there are trends in data that aren’t obvious when viewed in the traditional row/column format.
By simply displaying data in a different way, such as in a calendar report, trends can become obvious. The
APEX calendar report can display data in a daily, weekly, or monthly view and doesn’t require that you enter
any SQL.

Figure 7-60. The Application Builder view of the interactive report

Chapter 7 ■ Forms and reports: advanCed

214

Understanding Calendar Types
An APEX calendar is a type of APEX report. Data is rendered on a calendar instead of in a traditional row/
column format. The single requirement for an APEX calendar is that the underlying table or view must have
at least one DATE column.

There are two types of APEX calendars:

• Calendar: This is based on an open-source jQuery component and gives quite a lot
of functionality out of the box.

• Legacy Calendar: This uses the calendar region type that was available up through
APEX 4.2 and has less functionality than the new jQuery-based calendar.

Data in a calendar can act as a column link, the same as in any other report column. This makes it
simple to build a calendar that lets the user click a date and drill to another page or URL.

Creating a Calendar
To implement an APEX calendar, you can create a new page and a Calendar region using the Create Page
wizard. Here are the steps to follow:

1. Navigate to the Application Builder Home Page for your application.

2. Click the Create Page button in the upper right of the screen.

3. Select Calendar and click Next.

4. Again, select Calendar and click Next.

5. As shown in Figure 7-61, enter 400 for Page Number and Ticket Activity
Calendar for both Page Name and Region Name, and set Breadcrumb to
Breadcrumb.

Chapter 7 ■ Forms and reports: advanCed

215

Figure 7-62. Specifying the breadcrumb entry for the calendar

Figure 7-61. Creating a ticket activity calendar

6. When the page reloads, enter Ticket Activity Calendar for Entry Name and
click Next (see Figure 7-62).

Chapter 7 ■ Forms and reports: advanCed

216

7. Set Navigation Preference to Create a new navigation menu entry. When the
page refreshes, enter Calendar for New Navigation Menu Entry and click Next
(Figure 7-63).

Figure 7-63. Specifying tabs for a calendar

Chapter 7 ■ Forms and reports: advanCed

217

The next step in the wizard allows you to choose what is displayed on the calendar, as well as the begin
and end dates. Also, on this page you can choose how you want to see the date displayed (Date only or Date
and Time).

There are also options that will automatically generate a create page or an edit page, and choose
whether or not you want to be able to use drag and drop on your calendar to alter the begin and end dates of
an event.

8. Make sure the Source Type is set to Table, select your schema as the Table/View
Owner, select TICKETS_V (view) for Table/View Name, as shown in
Figure 7-64, and click Next.

Figure 7-64. Specifying the table owner and table name for a calendar

Chapter 7 ■ Forms and reports: advanCed

218

We’re going to use Page 210 for our create and edit pages, but we do want to turn Drag & Drop on.
Continue as follows:

9. For Display Column, select SUBJECT.

10. For Start Date Column, select CREATED_ON. For End Date Column, select
CLOSED_ON.

11. Set Show Time to Yes.

12. Set Add Create Page and Add Edit Page to No.

13. Set Generate Drag & Drop Code to Yes.

14. Click Next.

15. Set Primary Key Type to Select Primary Key Column(s).

16. Select TICKET_ID(Number) as the Primary Key Column.

17. Click Next.

18. Set Source Type to Existing Trigger and click Next.

19. Click Create.

Run the Calendar report, and you’ll see something similar to Figure 7-65. Hovering over any of the event
bars will show a hover-hint with more of the subject and date information displayed. Since we turned on
Drag & Drop, you can click and drag any event to change its Created On date.

Figure 7-65. The Calendar report as generated by the wizard

Chapter 7 ■ Forms and reports: advanCed

219

There are a few tweaks that we can make to the calendar to provide some more information to the
viewer and to link it with the Ticket edit screen on Page 210:

1. Edit Page 400 of the application.

2. Edit the Attributes of the Ticket Activity Calendar.

3. Locate and open the file ch7_calendar_details.txt, which you can find where
you extracted the book files. Copy and paste the contents of that file into the
Supplemental Information text area under the Settings attributes group, as
shown in Figure 7-66.

Figure 7-66. Setting calendar Supplemental Information attribute

Chapter 7 ■ Forms and reports: advanCed

220

4. Click the Options button next to View/Edit Link. The button should say No Link
Defined.

5. In the resulting pop-up dialog, set the Page to 210, set Name to P210_TICKET_ID,
set Value to &TICKET_ID., set Clear Cache to 210, as shown in Figure 7-67, and
then click OK. Save your changes.

Figure 7-67. Setting the View/Edit Link attributes

Chapter 7 ■ Forms and reports: advanCed

221

■ Note If the data being shown in the supplemental Information may contain special characters such as & ‘ “
or / apeX will attempt to encode them to reduce the risk of Cross-site scripting. If you trust the source of the data,
you can edit the Calendar region, and in the security attributes section, set “escape special Characters” to no.

Run the page, and your calendar should look similar to that in Figure 7-68. When you hover over an
event bar now, you can see more of the ticket detail. You can now also click the event bars to edit the Ticket
details.

Figure 7-68. The altered ticket activity calendar

Chapter 7 ■ Forms and reports: advanCed

222

Looking Behind the Scenes
Now that your calendar works, let’s look at what the Calendar wizard built for you. Edit page 400. In the
Rendering tab, shown in Figure 7-69, you’ll basically see only the Calendar region.

Figure 7-69. Page Rendering region for your calendar

Notice that there are no processes in the Processing tab of the page. That is because the Calendar region
uses JavaScript calls to get the data from the database as well as to change any values that shift based on the
drag and drop action. This is just a brief example of what JavaScript and jQuery can do.

Charts
In APEX 4.2, charts got a major facelift with the incorporation of AnyChart 6, and that facelift has extended
into APEX 5.0. Not only does this release of AnyChart produce charts that look much more professional than
in previous releases, but the charting engine also provides the option to use either Flash-based or HTML5-
based charts. This is a huge leap forward for applications aimed at the mobile market, because HTML5
charts render on most modern browsers with no need for extra plug-ins.

The beauty of the new charting engine is that you can flip between rendering Flash and HTML5 charts
at any time during the development of the page, and the declarative data remains the same, regardless of the
choice of rendering.

HTML5 charts also maintain the same level of interactivity that Flash charts have, including hover and
click-and-drill functionality.

Chapter 7 ■ Forms and reports: advanCed

223

Figure 7-70 shows both the Flash version and the HTML5 version of a bar chart, showing that, although
the look changes a certain amount, the same code generates very similar charts.

Figure 7-70. The same chart rendered with Flash and HTML5

Flash and HTML5 charts have almost identical functionality, but HTML5 charts are able to render
natively on any platform, whereas Flash charts will not work on any of the Apple mobile platforms.

Writing Queries for Charts
APEX charts generally need a query of this type:

SELECT
 link,
 label,
 value
FROM
 table
WHERE
 where conditions
GROUP BY
 group by column list
ORDER BY
 Order by column list

where

• link is a link to an APEX page or other URL;

• label is the label for the chart element; and

• value is the value to be charted.

Chapter 7 ■ Forms and reports: advanCed

224

The exact syntax changes slightly to suit the needs of the various chart types, but the general link-
label-value format remains the same. For the correct syntax for each chart type, see the APEX online
documentation.

Creating a Chart
Let’s create a pie chart that shows the count of tickets in each status. Later, you’ll link the action of clicking a
pie piece to filtering the tickets report to show only tickets of that status. Follow these steps:

1. Edit any page of the application.

2. Click the Create (+) button in the Page Designer toolbar and select Page.

3. Select Chart and click Next.

4. Select HTML5 Chart from the select list.

5. When the page refreshes, select Pie & Doughnut and click Next.

6. Select 2D Pie and click Next.

7. Enter 500 for Page Number and Tickets by Status for both Page Name and
Region Name, and set Breadcrumb to Breadcrumb (see Figure 7-71). When the
page reloads, enter Tickets by Status for Entry Name and click Next.

Figure 7-71. Setting the Page Number, Page Name, and Region Name attributes for a chart

Chapter 7 ■ Forms and reports: advanCed

225

8. Set Navigation Preference to Create a new navigation menu entry. When the
page refreshes, enter Chart for Tab Label and click Next (see Figure 7-72).

Figure 7-72. Setting the navigation attributes for a chart

9. Set Chart Title to Ticket Statuses and click Next.

10. Locate and open the file ch7_chart_query.txt, which you can find where you
extracted the book files. The contents of the file should be similar to this query:

SELECT
 'f?p=&APP_ID.:200:' || :APP_SESSION || '::::P200_STATUS_ID:' || sl.status_id link,
 sl.status label,
 count(*) value
FROM
 tickets t,
 status_lookup sl
WHERE
t.status_id = sl.status_id

GROUP BY
 sl.status_id, sl.status
ORDER BY
 3 DESC

Chapter 7 ■ Forms and reports: advanCed

226

11. Paste the contents of the file ch7_chart_query.txt into the Enter SQL Query
or PL/SQL Function Returning a SQL Query region, or type the previous query
into the region, and click Next.

12. Click Create.

Run the page. Your chart should look similar to the one in Figure 7-73.

Figure 7-73. The Ticket Statuses chart

Filtering Data for a Chart
The link that you included in your SQL statement passes a status value to the P200_STATUS_ID field on
page 200. However, you haven’t created that item yet. The next steps create the item P200_STATUS_ID
on page 200 so that, when a slice of the chart is clicked, the report can filter based on the status:

1. Edit Page 200 of the application.

2. Create a new item by dragging a Select List item from the Items section of the
Component Gallery into the Tickets region. Place it just in between the
P200_SEARCH item and the P200_GO button, as shown in Figure 7-74.

Chapter 7 ■ Forms and reports: advanCed

227

3. In the Edit Attributes pane, set the Name to P200_STATUS_ID and the Label to
Status. (See Figure 7-75).

Figure 7-74. Adding a select list item

Figure 7-75. Setting the name and label

Chapter 7 ■ Forms and reports: advanCed

228

6. Save your changes.

Again, by default, the labels of both the Search and Description fields are set to occupy three columns of
the layout grid. Let’s change this so that they only take up one column each:

1. Multi-select P200_SEARCH and P200_STATUS_ID.

2. In the Edit Attributes pane, navigate to the Grid attribute group and change the
Label Column Span to 1.

3. Save your changes.

Finally, you have to change the query for the Tickets report on page 200 to account for the value of the
item P200_STATUS_ID is set to:

4. Edit the Tickets report on page 200 by clicking its name.

5. Append the following line to the end of the query and Save your changes:

AND tickets.status_id LIKE :P200_STATUS_ID

Now, run the application and navigate to the Chart page. Click any value in the chart, and that value
should be passed to the Tickets page and in to the Status filter. The resulting report should only display those
records that correspond to the status that was clicked in the chart.

Figure 7-76. Setting the default

4. In the List of Values attribute group, set Type to Shared Component and List
of Values to P210_TICKETS_STATUS_ID, ensure that Display Null Values is set to
Yes, enter - All Statuses - for Null Display Value, and enter % for Null Return
Value.

5. In the Default attribute group, set Type to Static Value and enter % for the Static
Value, as shown in Figure 7-76.

Chapter 7 ■ Forms and reports: advanCed

229

Looking Behind the Scenes
Viewing the Chart page in the Application Builder, you can see that the only element generated is the Chart
region in the Page Rendering region, as shown in Figure 7-77. The Chart region is interesting in that it has a
Series element, which contains your SQL query. The Chart region embodies the logic that passes your query
to the AnyChart engine to produce the chart.

Summary
You’ve reviewed most of the APEX forms and report types, and you’ve walked through building various
forms and reports for the Help Desk system using the APEX form and report wizards. You have created an
interactive report and made adjustments as both a developer and an end user. You’ve been introduced to
charts, and you added a chart to the application to visualize your ticket status.

The common theme here is that the APEX form and report wizards are huge time-savers for developers,
creating all the objects—items, buttons, branches, processes, and so on—needed for a working form, report,
calendar, or chart. You were able to alter the created objects to quickly customize the generated form or
report to suit your needs. Still, you haven’t strayed far from what APEX builds for you.

As your application becomes more complex, there will be places where you wish to add code to enforce
business rules or to perform more complex processing logic than a simple insert, update, or delete. To do
so, you can use the various programmatic elements of APEX. The next chapter will address the topics of
validations, computations, and processes.

Figure 7-77. Rendering tab of the Ticket Statuses chart

231

Chapter 8

Programmatic Elements

This chapter will cover the programmatic elements that can provide both simple and complex features to
the APEX framework. APEX provides simple declarative features with wizards to guide you. Because of its
integration with the database, APEX can also use the full power of the PL/SQL engine inside the Oracle
database. As of the implementation of APEX 4, even JavaScript interactivity has been made declarative and
extendable in the framework.

Conditions
Throughout the building of the Help Desk application, there will be times when you want to take advantage
of the conditional logic available with APEX components. Rather than try to understand every type of
condition (there are around 60 in the list of condition types), you should focus mainly on grasping the
concept of a condition in general.

The condition feature provides a place where logic can turn on or off a particular piece of APEX
technology. Before action is taken to display or execute a particular APEX component, the condition applied
to that component is evaluated for a TRUE, or positive, result.

The logic options available to develop a condition are very broad. The condition type defines the
particular mechanics used to evaluate the condition, using parameters as appropriate. Simple page-item
comparisons are the easiest to explain. For example, a process may only need to be run if a particular page
item has a value. In the case of sending an email, an attempt to send a message should be made only if an
email address is given. From that simple start, conditions can become as complex as you need them to be.
In advanced cases, conditions can also include browser and web server options.

Take time to review the condition types that are available and become familiar with their usage. It isn’t
as important to understand the technical implementation or syntax of each item as much as what options
make up a single condition. This familiarity will be helpful when you start defining APEX components and
understanding considerations for a flexible and modular application design.

Required Values
Requiring a value is a common need, and APEX 5.0 supports required values through what is essentially
a NOT NULL flag at the page-item level. You don’t need to create a full-blown validation (discussed next) to
make an item required. You must simply make a choice from a toggle item.

Chapter 8 ■ programmatiC elements

232

Continuing with the Help Desk application, let’s implement a Value Required validation on the
Description field:

1. Edit Page 210 of the application.

2. Edit the P210_DESCR page item.

3. In the Validation attribute group, change Value Required to Yes, as shown in
Figure 8-1. (Depending on how you set up your UI Defaults, Value Required may
already be set to Yes.)

Figure 8-1. Requiring a value to be present

4. Save your changes.

To test the new validation, start by creating a ticket. Before you enter any values, click the Create button.
Figure 8-2 shows the expected results with both a consolidated page-validation message box and item-
validation messages.

Chapter 8 ■ programmatiC elements

233

In the application, the Subject element was already set up with a value requiring validation. This was
done because, when you created the form using the wizard, APEX took into account the NOT NULL property
of the column at the table level. You also see that the APEX wizard chose an item label template that includes
an asterisk (*) at the beginning of the label text. This gives the end user the visual clue that the column is
required. Be careful, however, that you don’t mistake choosing a label that indicates that the field is required
for actually making the field required using either the VALUE_REQUIRED attribute or a validation.

The error messages for multiple validations are cumulative. You see all validation messages when a
page is processed. See Figure 8-2.

■ Note the message text shown is a default and can be replaced by application-specific text as a feature
of globalization in the shared Components area. there is only a single default for the entire application per
language. When you need custom messages in a single-language application, i recommend using standard
validation types that allow a different message for each validation you create.

Figure 8-2. Validation showing required values for two elements both inline and consolidated at the
page level

Chapter 8 ■ programmatiC elements

234

Validations
The purpose of validations is to assist in providing data quality and to ensure the integrity of data entered
by the user. Mechanically, validations are tests that evaluate to TRUE or FALSE. Validations are evaluated
when a page is processed or submitted. All of the validations are evaluated; a FALSE return from any one
of them prevents additional page processes from executing and, ideally, results in feedback to the user.
Validations can also be executed on the client side using JavaScript. Although the interactive nature of
JavaScript can be very attractive in the user interface, it can also be circumvented easily. Any validations
that are executed in JavaScript should also be supported with appropriate validations during page
processing or at the database level.

■ Note it’s a good practice to assume that every transaction is malicious. it’s possible to implement
validations strictly for security purposes, but sometimes it’s difficult to step away from a process enough to
identify where weak points may exist. For example, in a shopping-cart application, what would happen to
the total if someone ordered -1 of a product? Would they automatically get a credit? take extra time in the
development process to look at your application so as to identify where security weaknesses may exist and to
implement features that make it generally more robust and secure.

There are four types of validations: item level, page level, and, for tabular forms, column level and
row level. Item-level validations operate against a single APEX item. Page-level validations are used when
multiple items are involved in validating the condition. Tabular form validations behave similarly but
are done against the columns and rows of the tabular form. You use an example of each in the Help Desk
application.

Item-Level Validation
Validations on a single element can have attributes specific to that element, and behavior can be customized
as required by that element. The example you will implement here is a validation that checks its condition
only when a specific criterion is true. The requirement is to have an end date entered whenever the status is
closed. Follow these steps:

1. Edit Page 210 of the application.

2. Navigate to the Processing tab of the Tree Pane.

3. Right click on the Validating node of the Processing tree and select Create
Validation, as shown in Figure 8-3.

Chapter 8 ■ programmatiC elements

235

4. In the Attributes pane, set the Name to Check CLOSED_ON date.

5. In the Validation attribute group, select Item is NOT NULL for the Type and then
select P210_CLOSED_ON for Item.

6. Enter Please enter a value for #LABEL#. into the Error Message text area,
and set the Associated Item as P210_CLOSED_ON, as shown in Figure 8-4.
The error message shown uses a substitution variable #LABEL# to include the
label of the item in the message. This way, when the label on the form item
changes in the future, the validation error message will automatically reference
the new label.

Figure 8-3. Preparing to create a validation for the page

Chapter 8 ■ programmatiC elements

236

In this step, we’ll make the validation apply only when the current status of the ticket is CLOSED:

7. In the Condition attribute group, set Type to PL/SQL Function Body, as shown
in Figure 8-5.

Figure 8-4. Setting the validation properties

Chapter 8 ■ programmatiC elements

237

8. Enter the following code into PL/SQL Function body:

IF :P210_STATUS_ID = get_status('CLOSED') THEN
 RETURN TRUE;
ELSE
 RETURN FALSE;
END IF;

9. Save your changes.

Once the validation has been created, it appears in both the Rendering and Processing tabs on the
APEX Page Designer, as shown in Figure 8-6. Both references point to the same implementation and are
shown for easy navigation.

Figure 8-5. Setting the Condition Type and Function body for the validation

Figure 8-6. Validations created appear in two places on the Application Builder page

This validation now requires that a value be entered for the Closed On item when the ticket status is set
to CLOSED. The condition applied to the validation is evaluated every time the page is submitted.

Chapter 8 ■ programmatiC elements

238

Page-Level Validation
Page-level validations apply to one or more items simultaneously and often can be an entire PL/SQL block
of code that must evaluate to TRUE in order for the validation to be successful. The requirement for the Help
Desk application is to compare the Created On date with the Closed On date to ensure that they occur in
chronological order. A ticket that is closed before it’s created doesn’t make any sense. This is a good example
of using a validation to ensure data quality. Here’s how to create the validation you need:

1. Edit Page 210 of the application.

2. Navigate to the Processing tab of the Tree Pane.

3. Right click on the Validating node of the Processing tree and select Create
Validation.

4. In the Attributes pane, set the Name to Closed Date must be after Creation
Date.

5. Enter Closed On Date must be Later than the Created Date for Error
Message, set the Type to PL/SQL Function Body (returning Boolean), and
then enter the following code into the PL/SQL Expression text area. Figure 8-7
shows the completed values. Click Next to continue:

IF TO_DATE(:P210_CREATED_ON,'DD-MON-YYYY') >
 TO_DATE(:P210_CLOSED_ON,'DD-MON-YYYY')
THEN
 RETURN FALSE;
ELSE
 RETURN TRUE;
END IF;

Chapter 8 ■ programmatiC elements

239

6. Save your changes.

In your application, you now have a feature that helps ensure the quality of the data being entered. This
type of data check makes sure any metric that calculates time from start to end doesn’t produce a negative
answer due to dates. This improves the quality of the data and the reliability of the metrics that are produced
in reports.

Figure 8-7. Validation attributes

Chapter 8 ■ programmatiC elements

240

Tabular Form Validation
Tabular forms in APEX 5.0 are able to perform validations better than they did in previous versions. The
wizard that creates a tabular form also adds validations for you. The wizard creates validations automatically
based on the data model. However, a wizard can only know so much about your business process, and the
data model may have more flexibility than you want in your application.

Looking at the definition of page 230, the wizard has created a number of Not Null validations for you,
based on the NOT NULL attributes in the underlying TICKETS table. However, the wizard can’t know that you
require a Closed On date when a ticket is closed. You can apply that validation using a column-level tabular
form validation:

1. Edit Page 230 of the application.

2. Navigate to the Rendering tab in the Tree Pane.

3. Expand the Columns node of the Manage Multiple Tickets tabular from.

4. Right click on CLOSED_ON and select Create Validation from the context menu.

5. In the Attributes pane, set Name to CLOSED_ON is Not Null if Ticket is CLOSED.

6. Set the Tabular Form to Manage Multiple Tickets, the Type to Column is NOT
NULL, and the Column to CLOSED_ON, as shown in Figure 8-8.

Figure 8-8. Setting Validation Name and Validation attributes

Chapter 8 ■ programmatiC elements

241

7. For Error Message, enter #COLUMN_HEADER# must be entered if Status is CLOSED,
as shown in Figure 8-9. Click Next.

Figure 8-9. An error message using substitution variables

8. In the Condition attribute group, set Type to PL/SQL Function Body and
the Execution Scope to For Created and Modified Rows, and then type the
following code into the PL/SQL Function Body text area:

IF :STATUS_ID = get_status('CLOSED') THEN
 RETURN TRUE;
ELSE
 RETURN FALSE;
END IF;

9. Save your changes.

When you run the Manage Multiple Tickets page, you can test the new validation either by adding a new
ticket with a status of CLOSED and no Closed On date set, or by removing the Closed On date of an existing
closed ticket and attempting to save the changes. In Figure 8-10, each row that doesn’t meet the validation
requirement is highlighted and appears in a list of errors at the top of the page. In this example, the rows that
didn’t have a Closed On date failed the validation and are flagged as needing attention.

Chapter 8 ■ programmatiC elements

242

■ Note By default, these validations are only executed for new or changed rows. You can change this
behavior by setting the execution scope of the validation, located in the Conditions section.

The Create Validation wizard also allows the creation of row-level validations on tabular forms.
These validations are run once for each row being processed by the tabular form. At this level, you could
easily create a validation, similar to the one created for page 210, that checked to see if the Closed On date
occurred after the Created On date.

As an exercise to see how much you’ve learned, try to implement that validation at the row level of the
tabular form on page 230.

Computations
An APEX computation is analogous to a PL/SQL function. The intent is to act on an item in the application
by setting the value using a variety of methods. This allows information to be derived rather than just stored
in the data tables. Computations can be implemented when a page is rendered or after a page is submitted
back to the server, depending on the needs of the application. Computations can act on any item available
within an application. Items that can be set include items on the current page, items on another page, and
even application-level items.

There is also a type of computation that can be used at the application level. It’s available in an
application’s shared components. This type of computation has additional options for execution points,
including a computation point called On New Instance that executes when a new session (or instance) is
given to a user when they log in.

Execution
It’s important to understand when a computation is executed relative to when a value is shown on a page and
to when other values are available to the computation. When using the value of an item in a computation, the
current session state for that item is the value that is used. A computation sets an item value in session state,

Figure 8-10. Results that fail validation are highlighted and presented in the message area

Chapter 8 ■ programmatiC elements

243

and any processing (computations, validations, or processes) that uses that item after it has been set sees the
results of that computation. When a page is rendered, it shows what is in the session state for that item at the
time it’s shown on the page. The computation point is the setting that determines when the computation is
executed.

On the page definition screen, several computation points are shown in the page tree. You can adjust
the computation point by clicking and dragging the computation in the tree to a different computation point,
or by editing the computation and changing the values for the sequence and computation point directly. The
sequence only orders the computations within a given computation point. In general, the page renders and
processes as shown on the page definition screen, starting at the top and going down the list to the bottom.
There are only minor exceptions, such as dynamic actions and AJAX callbacks, which have variable points of
execution.

Types
Computations have much of the same flexibility as other APEX components do. They can be complex or
simple, with the full capabilities of the Oracle database to support them. The types of computations are as
follows:

• Static Value: Simple static text value

• Item: Name of another item in the application

• SQL Query (Return Single Value): Any SQL statement as long as it returns a single row
and a single column

• SQL Query (Return Colon-Separated Values): SQL used for multi-select items

• SQL Expression: Expression used in the SELECT portion of an SQL statement

• PL/SQL Expression: Same as SQL Expression

• PL/SQL Function Body: PL/SQL function syntax with a RETURN statement

• Preference: The value of an APEX user preference as stored in the metadata

Computations can be conditional in the same manner as many of the other APEX components are.
The conditions can be as complex as the business rules require, with the ability to use the database features
and APEX session items to evaluate the condition. Conditions evaluating to TRUE result in the computation
being executed.

Creating a Computation
The Help Desk application has a requirement to display the number of days a ticket has been open. The
result should be a derived value that changes depending on the day and status of the record being reviewed.
You can accomplish this by putting a new item on the page that displays the result of the computation:

1. Edit Page 210.

2. From the Items section of the Components Gallery, click and drag the Display
Only item so that it appears just to the right of P210_SUBJECT. See Figure 8-11.

Chapter 8 ■ programmatiC elements

244

3. In the Attributes pane enter P210_DAYS_OPEN for Name and Days Open for the
Label. Set Save Session State to No.

Now there’s a new item in the region that you use as a container for the calculation. Next, we create the
calculation so that the value is set to the number of days the ticket has been open. However, we only want
this to appear for tickets that have already been created and not for new tickets being entered.

4. In the Conditions attribute group, set Type to Item Is NOT NULL.

5. When the region refreshes, set the value of Item to P210_TICKET_ID, as shown
in Figure 8-12.

Figure 8-11. Placing the Display Only item

Figure 8-12. Showing an item only when another item contains a value

6. In the Source attribute group, set the Type to Null.

7. In the Rendering tab of the Tree Pane, right-click P210_DAYS_OPEN, and from
the context menu, select Create Computation, as shown in Figure 8-13.

Chapter 8 ■ programmatiC elements

245

8. In the Attributes pane, set Type to SQL Query (Return Single Value).

9. In the SQL Query text area, enter the following SQL statement (also shown in
Figure 8-14), and then Save your changes:

SELECT
 DECODE(status, 'CLOSED', closed, open_or_pending) days_open
FROM
 (
 SELECT
 ROUND(sysdate - t.created_on) open_or_pending,
 NVL(ROUND(t.closed_on - t.created_on),0) closed,
 sl.status status
 FROM
 tickets t,
 status_lookup sl
 WHERE

t.status_id = sl.status_id
and t.ticket_id = :P210_TICKET_ID)

Figure 8-13. Using the right-click shortcut to create a computation

Chapter 8 ■ programmatiC elements

246

To see the results of adding the new item, run the application and navigate to the Tickets report (page
200). Click one of the Edit icons to bring up the single-record view (page 210). You should now see the result
of the computation as a number of days. When starting the process of creating a new ticket, the field isn’t
displayed, as the condition prevents the field from showing.

Processes
If computations are analogous to database functions, then processes are analogous to database procedures.
A process is a container for a unit of logic.

Processes are arguably the most complex part of APEX, because they’re the construct used to deal
with data processing in the database as well as with references to APIs, such as those used to send email
and perform any other business logic required in the application. When dealing with data forms, the APEX
wizard creates built-in processes that manage the reading and writing of data from the form. Those types of
built-in processes are called data-manipulation processes.

Processes, similar to computations, can occur during both page rendering and page processing.
Processes support the APEX conditions feature, which allows processes to be written as individual logic
units, with conditions determining whether the logic is needed.

Figure 8-14. Entering the SQL statement for a computation

Chapter 8 ■ programmatiC elements

247

Execution Points
Process execution points are the same as execution points for computations. The most commonly used
execution points for processes are On Submit - After Computations and Validations and On Demand - Run
This Process When Requested by AJAX, because these points support button-press activities and dynamic
actions. The full list is as follows:

• New Session

• Before Header

• After Header

• Before Regions

• After Regions

• Before Footer

• After Footer

• After Submit

• Processing

• AJAX Callback

Processes can be defined at the individual page level or at the application level as part of the shared
components. Functionally, page processes and application processes behave the same way. The difference
is found in where business logic is contained. For processes that need to run on all pages, you can define
an application process. Also, just as with regions, you can use Global Pages to define processes that run on
every page, but only for page rendering.

Process Types
Each different process type has a different use depending on the requirements. The types and their uses are
as follows:

• Automatic Row Fetch: Retrieves records from a single database table or view

• Automatic Row Processing (DML): Process to insert, update, or delete a record from a
single database table or view

• Clear Session State: Clears session state values; also referred to as cache

• Close Dialog: Process to close the current modal or non-modal dialog

• Form Pagination: Process to retrieve the previous or next record from a database
table or view. Most often used in master-detail forms

• Load Uploaded Data: Process to load the parsed spreadsheet data into an existing
table or view

• Parse Uploaded Data: Process to parse the prepared spreadsheet data in preparation
for loading into an existing table

• PL/SQL Code: Generally use for utilizing database PL/SQL logic

• Prepare Uploaded Data: Process to prepare spreadsheet data for uploading into an
existing table

Chapter 8 ■ programmatiC elements

248

• Reset Pagination: Resets pagination for a report

• Send Email: Declarative interface to easily send email

• Tabular Form – Add Rows: Process to add a row into a tabular form region.

• Tabular Form – Multi-Row Delete: Process to delete multiple rows from a tabular
form region

• Tabular Form – Multi-Row Update: Process to update multiple rows from a tabular
form region

• User Preference: Process to set user preferences for the end user.

• Web Services: Submits a request to a web-service provider

• Plug-ins: Processes functionality provided by plug-ins

Processes in the Help Desk Application
The details behind processes can be very complex. In order to provide an adequate example, let’s include a
simple process in the Help Desk application: a requirement that the application keep track of the last time
a record was modified. You can do this by updating a Last Updated date on the record every time it’s saved.
There’s more than one way to accomplish this task. Here, you will do it with a process.

First, you need to add the LAST_UPDATED field to the TICKETS table. To do this you use the SQL Workshop
again:

1. From the SQL Workshop drop-down menu, choose Object Browser, as shown
in Figure 8-15.

Figure 8-15. Navigating to the SQL Workshop Object Browser

2. Select the TICKETS table from the list of objects at left.

3. Click the Add Column button above the table definition, as shown in Figure 8-16.

Chapter 8 ■ programmatiC elements

249

4. Enter LAST_UPDATED for Add Column and DATE for Type, and click Next.

5. Click Finish.

Now you can add the process to the page:

6. Edit Page 210 of the application.

7. In the Processing tab of the Tree Pane, right-click the Processes node and choose
Create from the context menu, as shown in Figure 8-17.

Figure 8-16. Adding a column to the table

Figure 8-17. Using the context menu to create a process

8. Set the Name of the process to Set Last Processed and set Point to Processing.
Set the Type to PL/SQL Code.

Chapter 8 ■ programmatiC elements

250

In the next step, you will set the contents of your anonymous PL/SQL block. If you’re unfamiliar with a
PL/SQL anonymous block, it’s PL/SQL code that has a BEGIN and an END that wrap the contents. You need
to follow PL/SQL syntax conventions, including ending statements with semicolons. It’s possible to nest
anonymous blocks of code, but that isn’t necessary for this example:

9. Enter the following SQL into the PL/SQL Code text area (see Figure 8-18):

BEGIN
 UPDATE tickets SET last_updated = sysdate
 WHERE ticket_id = :P210_TICKET_ID;
END;

Figure 8-18. Entering the anonymous PL/SQL block

10. Leave both the Success and Error messages empty. These messages will appear
at the top of a page as feedback to the user after the process completes. Your
requirements don’t call for you to notify the user that the Last Updated date was
changed.

11. In the Condition attribute group, change When Button Pressed to SAVE.

12. Save your changes.

At this point, the process has been created. Currently, you don’t show the Last Updated date in the
summary report. In order to see the value on the report, you will need to add the LAST_UPDATED column to
the query from which the report draws data. That report resides on page 200 of your application:

1. Edit Page 200.

2. Edit the Tickets region by clicking the region’s name in the tree.

3. Add the LAST_UPDATED date to the Region Source of the report, as in the
following SQL. Click Save when you’re finished:

select TICKET_ID,
SUBJECT,
DESCR,
CREATED_BY,
CREATED_ON,
CLOSED_ON,
ASSIGNED_TO,
STATUS,

Chapter 8 ■ programmatiC elements

251

 LAST_UPDATED
 from TICKETS,

STATUS_LOOKUP
 where TICKETS.STATUS_ID = STATUS_LOOKUP.STATUS_ID
 and UPPER(SUBJECT) LIKE '%'||UPPER(:P200_SEARCH)||'%'
 and tickets.status_id LIKE :P200_STATUS_ID

To test and review the change, run the application and navigate to the Tickets report. Edit any ticket,
and click the Apply Changes button. You should now see a value for Last Updated indicating the current day.

This is a quick example of how you can use a process to apply form-based logic. When the form is used
to make changes, a brief piece of PL/SQL makes a record change automatically. Packages, procedures, and
APIs all can be reached using processes similar to this one.

PL/SQL Regions
The PL/SQL region type is effectively an open container for PL/SQL with the additional option to generate
output. You can use Oracle Web Application (OWA) Toolkit procedures such as htp.p to generate the output.
References to APEX items can be made using bind variable syntax (for example, :P1_ITEM_NAME), the v
function (for example, v('P1_ITEM_NAME')), or substitution string syntax (for example, &P1_ITEM_NAME.) to
support the logic contained in the region.

PL/SQL regions differ from process regions in that PL/SQL regions are executed only during page
rendering, whereas processes can run during both page processing and page rendering. PL/SQL regions
have the advantage of being able to generate content directly on the page. A use case for this type of output is
the need for a complex report format that is beyond the ability of a standard report template. In that case, a
PL/SQL package that generates the needed HTML output can be written and called by a PL/SQL region.

In the Help Desk application, you want to make the home page a bit more useful by adding a quick
summary of the number of tickets an individual has open. This is applicable only if someone is logged in.
So if they aren’t logged in, a simple greeting message will suffice. You can accomplish the task of adding the
summary by adding a PL/SQL region with some logic to output the appropriate message:

1. Edit Page 1.

2. Edit the APEX Issue Tracker region by clicking its name in the tree.

Currently, this region is a standard Static Content region, emitting exactly the HTML code you enter into
it. You want to make it dynamic, so switch it so it uses PL/SQL:

3. In the Identification attribute group, change Type to PL/SQL Dynamic Content.

4. Enter the following code for the PL/SQL Code text area, replacing the static
HTML that was there, and then Save your changes:

DECLARE
 l_count NUMBER;
 l_status_id NUMBER := get_status('OPEN');
BEGIN
IF :APP_USER != 'nobody' THEN
 SELECT count(*)
 INTO l_count
 FROM tickets
 WHERE assigned_to = :APP_USER
 AND status_id = l_status_id;

Chapter 8 ■ programmatiC elements

252

 htp.p('<h1>Welcome to the APEX Issue Tracking System, '
 || :APP_USER || '</h1>'
 || 'You have ' || l_count || ' Open tickets.
'
 || 'Select an option from the list');

ELSE
 htp.p('<h1>Welcome to the APEX Issue Tracking System</h1>'
 || 'Select an option from the list');
END IF;

END;

This code implements logic that makes a decision based on the user-substitution variable :APP_USER
and tailors the htp.p output according to that distinguishing factor. APEX provides “nobody” as a user name
when a user isn’t yet logged in, so the logic keys off of that value.

When the PL/SQL region is generated for a user who isn’t yet logged in, a simple welcome message
is produced (see Figure 8-19). When a user who has credentials is logged in to the application, a message
similar to that in Figure 8-20 is produced that shows a user-specific greeting and a quick count of the number
of open tickets assigned to that user.

Figure 8-20. With an authenticated user, the PL/SQL region generates a greeting and a ticket count

Figure 8-19. Issue Tracker PL/SQL region when the user isn’t yet logged in

In this section, you’ve created a dynamic PL/SQL region that alters the output based on the application
user. This section’s example, although simple, shows how the content of a region can be as dynamic as
necessary with the use of the PL/SQL in the database.

Chapter 8 ■ programmatiC elements

253

Dynamic SQL
Dynamic SQL is a term for SQL that isn’t finalized at design time, but rather is assembled at runtime by
any number of dynamic criteria. Dynamic SQL is used when the exact requirements of an SQL statement
aren’t known until runtime, or when the SQL needs to change while the application is running. Dynamic
SQL lets you modify column lists, where clauses, joins, and any other portion of an SQL statement while an
application is running.

APEX supports dynamic SQL in reports and can support PL/SQL functions returning SQL statements as
a result. There are some constraints, however. Functions must return a valid SQL statement. Depending on
the implementation, a statement may need to return a set of generic columns if the number of columns isn’t
known or will vary.

The Help Desk application has the requirement to differentiate public tickets from private ones. To
accomplish that goal, you can implement a public flag feature. Implementing the flag requires a quick
update to your data model and then an implementation of dynamic SQL on the Home Page report. Start by
making the data modification:

1. Navigate to the SQL Workshop.

2. Click the SQL Commands icon.

3. Enter the following SQL statement in the text area, and click the Run button.
This adds the new column called PUBLIC_FLAG to the TICKETS table:

ALTER TABLE tickets ADD (public_flag VARCHAR2(1))

4. Enter the following SQL statement in the text area, replacing the current
statement, and click Run. Ensure that the Autocommit checkbox is checked.
This updates all the current tickets to a default value of N:

UPDATE tickets SET public_flag = 'N'

Now that the data-model modifications are complete, you can move on to the application. Add the
option to see and edit the new value in the ticket edit screen:

5. Edit Page 210 of the Help Desk application.

6. Add a new Radio Group item to the Manage Tickets region using Drag & Drop
from the Component Gallery. Position the new item to the right of the Status ID
item.

7. Enter P210_PUBLIC_FLAG for Name and Public Flag for the Label.

8. In the Settings attribute group set Number of Columns to 2.

9. In the Appearance attribute group set Template to Required.

10. Set Value Required field to Yes.

11. In the List of Values attribute group, set Type to Static Values, while in the
Static Values text area enter STATIC:Y,N

12. Set Display Null Value to No, as shown in Figure 8-21.

Chapter 8 ■ programmatiC elements

254

When you add a column to a form that relates to a database column in the table on which the form
operates, a few settings have to be changed. Source Used and Source Type work together to identify how
each item gets its value:

13. In the Source attribute group, set Type to Database Column, which in turn sets
Source Used to Always, replacing any existing value in session state. Ensure
that Database Column Name is PUBLIC_FLAG.

14. In the Default attribute group, set the Type to Static Value and enter N for
Static Value.

15. Save your changes.

Now that you have a PUBLIC_FLAG column in your data model and the ability to control it through the
Tickets form, you can create the dynamic SQL report on page 1 to display tickets with a Public option for
unauthenticated users:

1. Edit Page 1 in your application.

2. Create a new region by clicking the Create button in the Page Designer toolbar
and selecting Report Region, as indicated in Figure 8-22.

Figure 8-21. The LOV for the public flag

Chapter 8 ■ programmatiC elements

255

Figure 8-23. Region title and display point

Figure 8-22. Creating a region for the SQL to generate your report

3. Select Classic Report, and click Next.

4. Enter Current Open Issues for Title, as shown in Figure 8-23. Click Next.

Chapter 8 ■ programmatiC elements

256

5. Set the Source Type to SQL Query and enter the following SQL into
the Region Source. Click the Create Region button when you’re finished to
accept the defaults for all of the remaining settings:

DECLARE
 l_sql VARCHAR2(500);
BEGIN

l_sql := l_sql || q'!
SELECT
subject,
created_on,
assigned_to

FROM
tickets t,
status_lookup sl

WHERE
t.status_id = sl.status_id
AND sl.status = 'OPEN'

!';

IF :APP_USER = 'nobody' THEN
 l_sql := l_sql || q'! AND public_flag = 'Y' !';
END IF;

RETURN l_sql;
END;

To see the results of this report fully, you need to set a few tickets with the new PUBLIC setting. Navigate
to the ticket summary screen as a logged-in user and change a few OPEN tickets to have the PUBLIC option
set to Yes. When you navigate to the home screen as a logged-in user, a full list of open tickets should appear,
as shown in Figure 8-24. After logging out, you will see only the tickets that have been identified as PUBLIC.

Chapter 8 ■ programmatiC elements

257

Figure 8-24. Resulting report generated from dynamic SQL

■ Note the sQl statement uses a quoting syntax that you may not be familiar with. oracle Database
10g introduced a quoting mechanism for string literals that allows you to define your own string delimiters,
removing the need to double up single quotes in strings. any character can be used as a delimiter, including
bracket combinations () {} [] <>. the basic syntax is q'X string X' where X is any single character. the
q'X opens the literal string, and the X' closes the literal string. You can find more details on the literal syntax in
the Oracle Database SQL Language Reference.

Chapter 8 ■ programmatiC elements

258

Summary
As with any programming language or framework, learning the basics is the first step. This chapter touched
on a lot of points that could be considered to be the tips of icebergs. Each section has the capability to reach
into a vast set of technologies, with the Oracle database being primary among them. The intention here is
to demonstrate how the APEX framework works through the example application and to provide a starting
point for additional detail discovery.

259

Chapter 9

Security

Security has varying degrees of implementation; there’s never a black-and-white answer. The question of
how much security is needed is followed up by additional questions regarding the value of what is being
protected and the risks, repercussions, and likelihood of it being sought after. For every security measure,
there will always be someone trying to circumvent it. This chapter will review basic security features and an
approach to securing the Help Desk application. The concepts reviewed here apply to all APEX applications
and are specific to the APEX framework.

User-Maintenance Navigation
In the Help Desk application, you have the requirement to allow users to be maintained in the application
through the web interface. Let’s add a section to the application that allows for the maintenance of user
accounts, and then let’s modify the tab structure so as to navigate to the newly created form. This time, you
won’t use the Create Page wizard to create the menu items, but instead will create them from scratch in the
Shared Components section so that you may gain a better understanding of how the menu hierarchy works.

First, create a blank page that will be the landing page for your new tab (tabs require a page to reference):

1. From the Application Builder home page, while editing the Help Desk
application, click the Create Page button.

2. Select the option for Blank Page and click Next.

3. Set Page Number to 600, enter Users for the Name field, and set the
Breadcrumb selection to Breadcrumb. When the page refreshes, ensure that
Entry Name is Users and click Next.

4. Select Do not associate this page with a navigation menu entry for the
Navigation Preference radio group. Click Next.

5. Click Finish to complete the creation of the page. The completed page should
be empty, and you should not see any new menu item related to it, as shown in
Figure 9-1.

Chapter 9 ■ SeCurity

260

Now that you have a Users page, you need to make a modification to the navigation. We’ll add an Admin
entry to the menu and create sub-entries for user maintenance. Here’s the process to follow to add the new
menu items with the correct hierarchy:

1. Navigate to the Shared Components page.

2. In the Navigation section, click Navigation Menu.

3. The interactive report shows the available menus. Click on Desktop Navigation
Menu, as shown in Figure 9-2.

Figure 9-1. Viewing the newly created empty page with its single breadcrumb entry

Figure 9-2. Clicking the Desktop Navigation Menu

Looking at the current menu structure, as shown in the report in Figure 9-3, you can see we already
have seven entries, and that two of the entries (Submit a Ticket and Contact Us) are sub-entries of the Home
menu entry. Next, we will add the Admin menu entry and then add the sub-entry for user maintenance.

Chapter 9 ■ SeCurity

261

4. To add the Admin menu entry, click the Create List Entry button in the upper-
right corner, as indicated in Figure 9-4.

Figure 9-3. Viewing the currently existing Navigation Menu entries

Figure 9-4. Creating a new menu entry using the Create List Entry button

5. In the Entry section, enter Admin for List Entry Label.

6. In the Target section, enter 600 for Page and click Create List Entry at the top of
the page. See Figure 9-5.

Chapter 9 ■ SeCurity

262

1. To add the User Maintenance menu entry, click the Create List Entry button in
the upper-right corner.

2. In the Entry section, set the Parent List Entry to Admin and then enter
User Maintenance for List Entry Label.

3. In the Target section, enter 600 for Page.

4. In the Current List entry section, set List Entry Current for Pages Type to
Comma Delimited Page List.

5. In the List Entry Current for Condition, enter 600,610 and click the Create List
Entry button at the top of the page.

You now have a User Maintenance menu item as a sub-entry to your Admin menu item. When the user
clicks the parent menu item, they are taken to the page indicated when you created the menu entry, but a
tab may be active for other pages in the application, too. In this case, the User Maintenance menu item will
be current for both page 600 and 610. It’s OK that you haven’t created page 610 yet—you will shortly.

Running the application now will show the results seen in Figure 9-6. The page that is currently active
changes the highlight that is applied to the different tab elements.

Figure 9-5. Entering the attributes for the new Admin menu entry

Chapter 9 ■ SeCurity

263

You now have a navigational framework that clearly distinguishes the items needed to administer the
application. This design is extensible. As the application grows with time, additional features requiring
administration could be added to this navigational structure.

User-Maintenance Data Entry
As part of the Help Desk design, you should be able to maintain the users from the application. To do this,
you need to implement some new database objects.

1. Upload and run the script ch9_security_objects.sql. Refer to Chapter 4 if you
need step-by-step instructions. You should see 13 rows, all of which complete
successfully.

Let’s walk through briefly what this script does for you:

• Lines 1–16: Create a function called hash_password that encodes any string
passed to it.

• Lines 18–24: Create the USERS table that will hold the user records.

• Lines 26–27: Create the USER_SEQ sequence that will be used as the primary key
for the USERS table.

• Lines 29–37: Create a Before Insert trigger on the USERS table that automatically
assigns the next sequence as the primary key, converts the user name to
uppercase, and calls the hash_password function to encrypt the user’s password.

• Lines 39–50: Create a Before Update trigger that converts the user name to
uppercase and hashes the user’s password if it has changed.

• Lines 52–87: Create the authenticate_user function that validates whether the
passed user name and password are valid compared to what exists in the USERS
table.

• Lines 90–103: Create six entries in the USERS table, all with the password apress.

Figure 9-6. The new navigation menu showing the Admin entry and User Maintenance sub-entry

http://dx.doi.org/10.1007/978-1-4842-0466-5_4

Chapter 9 ■ SeCurity

264

Now that you have your new database objects, you can continue to implement the security model:

2. Edit Page 600 of the application.

3. Create a new region by clicking the Create button and selecting Form Region.

4. Select Form on Table with Report and click Next.

Because the report is actually quite small and contains very few columns, it’s probably overkill to create
it as an interactive report, so stick to the Classic report in this instance:

5. Set Implementation to Classic.

6. Enter Users for Region Title and set Region Template to Standard. The settings
look like those in Figure 9-7.

Figure 9-7. Report page setup

7. Click Next.

8. Set Table/View Owner to your schema name and set the Table/View Name to
Users (table), as shown in Figure 9-8.

Chapter 9 ■ SeCurity

265

9. Click Next.

10. Select USER_ID and USER_NAME as the columns to be displayed in the report.
Remove the PASSWORD column by shuttling it to the left, and then click Next.

11. Select any Edit link image and click Next.

12. Enter 610 for Page Number and Manage Users for Page Name and Region Title,
as shown in Figure 9-9. Click Next.

Figure 9-8. Setting the owner and table names

Chapter 9 ■ SeCurity

266

13. Set Primary Key Type to Select Primary Key Column(s) and, when the page
refreshes, select USER_ID for Primary Key Column 1. Click Next.

14. Select Existing Trigger for Primary Key Source and click Next.

15. Select USER_NAME and PASSWORD as the columns to be editable on the form, as
shown in Figure 9-10, and click Next.

Figure 9-9. Defining the name of the Manage Users form

Chapter 9 ■ SeCurity

267

16. Set Insert, Update, and Delete all to Yes and click Next.

17. Click Create.

At the completion of these steps, the Help Desk application has some additional objects. The region on
page 600 is the report of the current users. Also notice the new page that allows editing of the data values,
including all the processes to do the corresponding database transactions. However, you still need to do a
few things to page 610 in order for it to display the breadcrumbs properly:

18. Navigate to the Shared Components region for your application.

19. In the Navigation Section, click the Breadcrumbs link.

20. Click the Breadcrumb icon to view all of the breadcrumb entries.

Viewing the breadcrumb entries, we can see that, while there is an entry for page 600, there is no entry
for page 610. We’ll need to add that manually:

21. Click the Create Breadcrumb Entry button in the upper-right part of the page.

22. In the Breadcrumb section, enter 610 for Page.

23. In the Entry section, select Users(Page 600) as the Parent Entry and then enter
Manage Users for the Short Name.

24. In the Target section, enter 610 for Page. These entries are shown in Figure 9-11.

Figure 9-10. Select USER_NAME and PASSWORD as fields to be seen in the form

Chapter 9 ■ SeCurity

268

Figure 9-11. Entering the breadcrumb details for page 610

25. At the top of the page, click Create Breadcrumb Entry.

When you’re finished, page 610 has a Shared Components breadcrumb entry just like page 600.
Running the application displays shows a breadcrumb entry for both the Users report page and the Manage
Users page, as shown in Figure 9-12.

Figure 9-12. Showing the breadcrumb entry for the Manage Users page

Finally, you need to change the item type of P610_PASSWORD to Password, so it accepts a user’s input
but displays asterisk (*) characters as the password is typed. This item type is designed not to retrieve data
when a record is edited, despite being bound to a database column. Also, the item type doesn’t save any
value in session state, meaning it doesn’t remember the value entered after the page processing is complete.
This is a security feature to prevent data identified as a password from being retrieved inappropriately. Here
are the steps:

26. Edit Page 610.

27. Edit the item P610_PASSWORD.

28. In the Properties Editor, set Type to Password, as shown in Figure 9-13.

Chapter 9 ■ SeCurity

269

Although you want a password to be required when creating a new account, if the admin user doesn’t
enter a password while editing an existing user, you want the system to keep the current password. Because
of this, you need to set the Value Required attribute of the password field to NO and instead implement a
validation that only fires when you’re creating a new user:

29. In the Validating section of P610_PASSWORD, set the Value Required attribute
to NO.

30. While editing Page 610, right-click P610_PASSWORD, and select Create
Validation.

31. In the Properties Editor, set Name to P610_PASSWORD Is Not Null.

32. In the Validation Section, select Item is Not Null as Type and set Item to
P610_PASSWORD.

33. Enter A password must be specified. for Error Message.

34. In the Condition section, set When Button Pressed to CREATE.

35. Save your changes.

This completes the navigation and UI part of the security scheme you’re implementing. With the
navigation and maintenance in place, you can now implement the authentication scheme that will use the
information.

Authentication
The key to making a secure application is to understand whom the accessing user is. APEX refers to this as
authentication. Authentication answers the question, “Who are you?” The APEX tool provides a series of
predefined authentication mechanisms, including a built-in authentication framework and an extensible
custom framework. At design time, it’s easy to switch between authentication methods by setting the active
scheme. There can be only one active authentication scheme at a time for an application. The following are
the major types of authentication schemes:

• Application Express Accounts: Users are managed in the APEX workspace and are
maintained just like workspace developer accounts.

• LDAP Directory: The user is an existing LDAP-compliant server such as Active
Directory or Oracle Internet Directory.

Figure 9-13. Setting the P610_PASSWORD element to a password field

Chapter 9 ■ SeCurity

270

• Oracle Application Server Single Sign On: Authentication can pass between APEX
and an existing Oracle SSO server. Logging into the SSO server once passes the same
credentials to all APEX applications.

• Database Accounts: Database user names and passwords determine authentication.
Don’t confuse this with data access in an APEX application.

• HTTP Header Variable: This approach supports the use of HTTP header variables to
identify a user and to create an Application Express user session.

• Custom: Logic is determined by the developer. An example of usage is for Internet-
facing applications where self-registration may be desired. Another example is when
more than one authentication source is used simultaneously, such as using two
LDAP servers.

• Open Door: Developer testing simulates logging in as different individuals. This isn’t
intended to be used as a public authentication scheme.

• No Authentication: This option is intended to allow all parts of the application to be
reachable without needing a user to log in.

Each application has its own set of authentication schemes managed as part of its Shared Components.
Authentication schemes can be copied between applications when needed. This ability to copy is especially
useful when a custom authentication scheme has been developed and is desired in more than one
application. The authentication schemes also utilize the APEX subscription framework to allow a master
copy to be applied to subscribers inside of a single workspace.

Custom Authentication Schemes
In the previous section, the script that was imported included definitions for tables, triggers, and functions.
You will use those elements as part of your custom authentication scheme. The key component of the
authentication scheme is a function that compares the given user name and password to the stored values
in the USERS table. If there is a match, then the user is authenticated. You should review the database objects
and PL/SQL function code from the SQL Workshop for more details on how this is implemented.

■ Note although the USERS table contains a field named PASSWORD, it’s not the actual password value; it’s an
encrypted hash of the password. passwords should never be stored as plain text.

Here’s the process to follow to create a custom authentication scheme based on the database objects
just mentioned:

1. Navigate to the Shared Components of the application.

2. In the Security region, click Authentication Schemes as shown in Figure 9-14.

Chapter 9 ■ SeCurity

271

3. Click the Create button at the upper right on the Authentication Schemes
screen.

4. Select Based on a pre-configured scheme from the gallery and click Next.

5. Enter Custom Authentication Scheme for Name, and then select Custom for
Scheme Type. The page refreshes and displays different entry options based on
the scheme type selected.

6. In the Settings section, enter authenticate_user for Authentication Function
Name, as shown in Figure 9-15. You don’t need to fill out any of the other items
in this section.

Figure 9-15. Setting the Authentication Function Name

Figure 9-14. Navigating to the Authentication Schemes shared component

7. Click Create Authentication Scheme.

Chapter 9 ■ SeCurity

272

■ Note No parameters are used here, nor is a pL/SQL semicolon. this is part of the definition of how
apeX handles custom authentication functions. the authenticate_user function that was created earlier
conforms to the expected signature: a function returning a BOOLEAN value with two parameters: p_username
varchar2(255) and p_password varchar2(255).

By default, when you create a new authentication scheme, it’s automatically set to be the active scheme.
Now you must use the user names and passwords that exist in the USERS table to log in to your application.

Run the application, and if it shows that you’re logged in, log out. You can sign on as any of the following
users: Scott, Doug, Martin, Karen, Patrick, or Tim; all passwords are apress in lowercase.

Conditional Security
Many aspects of APEX are conditional. One pair of conditions is particularly applicable to the authentication
status: User Is the Public User and User Is Authenticated. These conditions can help you limit objects in
APEX to be available either to public users (those who haven’t logged in) or to authenticated users
(those who have logged in).

By applying security rules to the Help Desk application, you can improve usability by restricting the
display of menu options that aren’t available to the public. This avoids confusion and improves the overall
user experience when accessing the application. Let’s walk through the creation of this condition:

1. Navigate to the Shared Components area of the application.

2. In the Navigation section click the Navigation Menu link.

3. Click the Desktop Navigation Menu link to view the Navigation Menu entries.

4. Edit the Tickets menu item by clicking on its name.

5. In the Condition section, set Condition Type to User is Authenticated
(not public) and click Apply Changes. Figure 9-16 shows the expected value of
the condition.

Figure 9-16. Setting the menu item condition

6. Repeat steps 4 and 5 for the Analysis, Calendar, and Chart, and Admin menu
items.

Run the application now and click the Logout link. The Admin, Tickets, Analysis, Calendar, and Chart
menu items should disappear, leaving only the Home menu item and its children. Logging in again should
restore the display of the tabs as they were previously seen.

Chapter 9 ■ SeCurity

273

Access Control
APEX includes a built-in feature for creating an access-control framework with three roles: Administrator,
Edit, and View. The wizard is designed to create data structures to store the roles, pages to edit the
assignments, and authorization schemes to be used throughout an application. This wizard makes the job
of creating basic security capability very easy in an application. The summary of the objects created can be
seen in Figure 9-18 as the last step in the wizard.

There are, however, downsides to using the built-in access-control mechanism. If you require more
granular access control than the Administrator, Edit, and View roles provide, then you’re likely going to want
to create your own access-control mechanisms from scratch. For the Help Desk application, these roles will
suffice. Here’s how to implement access control in the Help Desk application:

1. Navigate to the Application Builder home page for your application and click
Create Page.

2. Select Access Control and click Next.

3. Enter 620 for Administration Page Number and click Next.

4. Select Create a new navigation menu entry, allow the page to refresh, and
then enter Access Control for New Navigation Menu Entry. Then, set the
Parent Navigation Menu Entry to Admin, as shown in Figure 9-17. Click Next.

Figure 9-17. Assign page 620 to a new menu entry under the Admin entry

5. Click Create, as shown in Figure 9-18.

Chapter 9 ■ SeCurity

274

With the completion of the wizard, all the objects have been created and are available for use. Before
you enable the security utility, you need to add some users to allow you to use the admin functions. Running
the application now, you may notice that the user name is simply an open text field. You should create a
list of values (LOV) as a shared component that contains all the users for whom you want to control access.
Because the access-control page is now part of the application, you can alter it as needed. To increase the
quality of the data entered, update the user field to be a select list:

6. Edit Page 620.

7. Expand the Columns node for the Access Control List report.

8. Edit the ADMIN_USERNAME column.

9. In the Identification section, set Type to Select List.

10. In the List of Values section, set the Type to SQL Query and then enter the
following SQL Statement in the SQL Query text area and save your changes:

SELECT user_name d, user_name r
FROM users

Figure 9-18. Viewing the object summary as part of the Access Control wizard

Chapter 9 ■ SeCurity

275

When you run page 620, notice that no breadcrumb has been created for the page. You can do this
as follows:

1. Navigate to the shared components for your application.

2. In the Navigation section, click the Breadcrumbs link.

3. Click the Breadcrumb icon to edit the breadcrumb entries.

4. Click the Create Breadcrumb Entry button in the upper right of the page.

5. In the Breadcrumb section, enter 620 for Page.

6. In the Entry section, enter Access Control for the Short Name.

7. In the Target section, enter 620 for Page.

8. At the top of the page, click Create Breadcrumb Entry.

Next, you need to associate a privilege with each of the existing users via the access-control pages:

9. Run the application and log in with the user SCOTT.

10. Navigate to the Access Control screen by clicking the Admin menu item and
then the Access Control sub-entry.

11. In the Access Control List section, click Add User.

12. Select Scott for Username, set Privilege to Administrator, and click Add User.

13. Select Doug for Username, set Privilege to Edit, and click Add User.

14. Select Patrick for Username, set Privilege to Edit, and click Add User.

15. Enter Martin for Username, set Privilege to View, and click Apply Changes.

Your results should look similar to those in Figure 9-19. Every time a new user is added, the listing in the
report updates. You can now use these users to test the application.

Figure 9-19. The Access Control List with user names and privileges

Chapter 9 ■ SeCurity

276

One of the features of the access-control utility is the ability to enable or disable the enforcement of the
utility itself. Running page 620 displays the header shown in Figure 9-20. By default, the access-control utility
is set to Full Access. To enable the access-control features, set the mode using the following steps:

16. Run Page 620.

17. Set Application Mode to Public read only. Edit and administrative privileges
controlled by access control list.

18. Click the Set Application Mode button shown in Figure 9-20.

Figure 9-20. The access-control list enabled as public read only

You now have the editing forms in place and all the data set up properly, although the application isn’t
yet using any of the restrictions you’ve created. You will do that in the next section.

Authorization
Whereas authentication answers the question “Who are you?” authorization works to answer the question
“What are you allowed to do once logged in?” APEX provides shared components of an application called
authorization schemes. These authorization schemes can be applied to components within the application
to tell the APEX engine when the components should be executed or rendered.

When you created the access-control pages, APEX created three authorization schemes for you, one for
each role available in the edit screens: Admin, Edit, and View. Figure 9-21 shows the Authorization Schemes
shared component report.

Figure 9-21. The authorization schemes created as part of the access-control mechanisms

Chapter 9 ■ SeCurity

277

The last step in this process is to start locking down pages using these authorization schemes. First, let’s
lock down the administrator section of the application so that only a user with Admin privileges can use it:

19. Edit Page 620.

20. Edit Page Attributes by clicking the page name.

21. In the Security section of the Properties Editor, set Authorization Scheme to
access control - administrator, as shown in Figure 9-22. Save your changes.

Figure 9-22. Setting the authorization scheme at a page level

Figure 9-23. Error message generated when the authorization scheme returns a denied result

22. Repeat steps 22 and 23 for pages 600 and 610.

Now that the authorization scheme has been implemented on the administration pages, you can test
the security behavior. Only a user set up with the Administrator role on the access-control page can use
Admin pages 600 through 620.

Log in to the application as the user Scott, and you can navigate all the administration functions.
Logging in as any other user and clicking the Admin parent tab results in the message shown in Figure 9-23.

Chapter 9 ■ SeCurity

278

The error message in Figure 9-23 isn’t very friendly. An application should make every effort to avoid
the type of event that would cause a privilege error. In this application, the Admin menu item should be
removed from the page when it doesn’t meet the access restrictions. You can accomplish this by applying the
same authorization scheme to the menu item itself:

23. Navigate to the Shared Components for your application.

24. In the Navigation section click the Navigation Menu link.

25. Click the Desktop Navigation Menu link to edit the navigation entries.

26. Edit the Admin menu entry by clicking on its name.

27. Under Authorization, set Authorization Scheme to access control -
administrator, and click Apply Changes.

Now, when running the application, if the user isn’t privileged with administrator access, the menu
item doesn’t display. This avoids the event that would cause the user to see the access-denied error message.

You’ve applied the authorization scheme at both the page level and the tab level for the administration
pages. Next, let’s remove the ability for a view-only user to create new records by associating the Edit
authorization scheme with the button required to create tickets:

28. Edit Page 200 of the application.

29. Edit the Create button by clicking its name.

30. In the Security section, shown in Figure 9-24, set Authorization Scheme to
access control - edit, and click Save.

Figure 9-24. Security setting for the buttons

31. Repeat step 32 for the Manage Multiple Tickets button.

To test this change, log in with the user name Martin. This user has been granted view privileges, so the
buttons on page 200 aren’t shown. Does this mean that Martin can’t create tickets?

Let’s review the steps you applied to the Admin pages. Security was first applied to the page itself, and
then additional security was applied to prevent the access-denied error. In the case of the buttons to create
tickets, security to remove the buttons doesn’t prevent the page from being run directly either from the
Application Builder or by changing the page number in the URL to 210 or 230.

■ Important removing or hiding a button, a tab, or another link doesn’t secure the target it was pointing at;
it only helps reduce errors seen by users on components that are already secure.

Chapter 9 ■ SeCurity

279

The design for the Help Desk application has the Manage Multiple Tickets page only available to users
with edit privileges, so the entire page is secured at the edit level. The single-record view of a ticket continues
to be visible to all authenticated users, but without the buttons related to record manipulation:

32. Edit Page 210 of the application.

33. Edit the Create button in the Manage Tickets region by clicking its name.

34. In the Security section, set Authorization Scheme to access control - edit.

35. Repeat steps 35 and 36 for the Delete and Save buttons as well as for the second
Create button located in the Ticket Details region. Remember to Save your
changes.

■ Note the previous step could also be completed by using apeX 5.0’s new multi-edit capability. Simply
multi-select the items you wish to edit and change the authorization Scheme once for all selected items.

36. Edit Page 220 of the application.

37. Edit the Create button by clicking its name.

38. In the Security section, set Authorization Scheme to access control - edit.

39. Repeat steps 39 and 40 for the Delete and Save buttons. Remember to Save your
changes.

40. Edit Page 230 of the application.

41. Edit the page attributes by clicking the page name.

42. In the Security section, set Authorization Scheme to access control - edit, and
click Save.

Review the application now with different users. Notice how the user Martin can still navigate from the
Tickets report to view the details of the ticket, but there are no buttons to modify the records in the database.
Even though the form elements are editable, they aren’t written back to the database without the proper
form submission.

Read-Only Items
Normally, users can edit the contents of an item in APEX. There are instances where you want to prohibit
them from doing so, but you don’t want to hide the item entirely. At the conclusion of the previous step,
the user Martin doesn’t have the ability to save edits of the ticket information even though the form allows
Martin to change the contents of the form items.

To assist in preventing changes, each item in APEX has a read-only attribute that you can set
programmatically. The approach is similar to how item conditions are managed. Because the read-only
attribute can’t use an authorization scheme directly, you can use the APEX API APEX_UTIL.PUBLIC_CHECK_
AUTHORIZATION to determine whether a user has the rights to edit the data. This API takes a parameter of
the authorization scheme name and runs the verification, returning a Boolean result that can be used in
PL/SQL logic.

Although we could go and apply the read-only condition to each individual item in each region, there is
a way to make an entire region read-only.

Chapter 9 ■ SeCurity

280

Here are the steps to use the read-only attribute and the API just discussed:

1. Navigate to and edit the regions indicated in Table 9-1 by clicking the region
name on the respective page.

Table 9-1. Items That Require the Read-Only Attribute

Page Number Page 210 Page 220

Region to Update Manage Tickets Ticket Details

2. In the Read Only section, set Type to PL/SQL Function Body, as shown in
Figure 9-25. Set the value for PL/SQL Function Body to the following:

RETURN NOT APEX_UTIL.PUBLIC_CHECK_AUTHORIZATION('access control - edit');

Figure 9-25. Setting the region to be read-only using the Read Only attribute

When you run the application as Martin, information about a ticket on page 210 shows data without the
confusion of form elements. Authenticating as any other user shows the data in form elements and displays
the corresponding buttons. Results of the read-only view are shown in Figure 9-26; compare them to the
form in edit mode, shown in Figure 9-27.

Figure 9-26. Ticket record in read-only mode

Chapter 9 ■ SeCurity

281

Data Security
At this point, the majority of the application is relatively secure. What you lack is data security applied to
segregate the data between application users. Any authenticated user can see and make changes to any
other user’s records. APEX doesn’t provide a built-in construct for securing data. APEX does support and
work well with other Oracle technologies that do secure data, such as Virtual Private Database, Oracle Label
Security, and Transparent Data Encryption.

Although there are a number of ways to deal with data segregation and security, one of the simpler
methods is to use a view to enforce the data available to a user in place of all references to the base table.
This method is effective and works with all versions of the Oracle database. The process works by adding a
securing function to the view that uses the current APEX user name, filtering out the data from other users.

To implement this data security, you will run a script that creates a new view named TICKET_SECURE_V
and then re-create the other two views, TICKET_ACTIVITY_V and TICKET_V, so they point to the secured view
rather than to the TICKETS table directly. Then you will make modifications to the other key components of
the pages that access ticket data so as to also use the new secure views. Here are the steps:

1. Locate, upload, and run the script ch9_data_security_script.sql. Refer to
Chapter 4 if you need step-by-step instructions. You should see three rows in the
results report, all of which complete successfully.

2. Once the script completes, run the application and navigate to the Analysis page.
You should notice that only tickets or ticket details that are assigned to the user
you’re logged in as appear.

Next, make changes to the source of several other pages so they reference the new secure objects you
just created:

3. Edit Page 200 of the application.

4. Select the Tickets report by clicking its name.

Figure 9-27. Ticket record in edit mode

http://dx.doi.org/10.1007/978-1-4842-0466-5_4

Chapter 9 ■ SeCurity

282

5. Locate and open the file ch9_report_p200.txt, and then copy its contents into
the SQL Query text area, replacing everything that is there. Save your changes.

6. Run Page 200 and notice that you can only see the tickets that are assigned to the
current user.

You need to make a similar change on the Manage Multiple Tickets page:

7. Edit Page 230 of the application.

8. Edit the Manage Multiple Tickets report by double-clicking it.

9. Locate and open the file ch9_report_p230.txt and copy its contents into the
SQL Query text area, replacing everything that is there. Save your changes.

10. Run Page 230 and notice that you can only see the tickets that are assigned to the
current user.

Finally, you should also apply this rule to the chart, because it’s still allowing you to see the status from
all records in the system, which is inaccurate:

11. Edit Page 500 of the application.

12. Under the Tickets by Status chart, edit Series 1 by clicking its name.

13. Locate and open the file ch9_report_p500.txt and copy its contents into the
SQL Query region, replacing everything that is there. Save your changes.

14. Run Page 500 and notice that the chart only reflects the status of either
unassigned tickets or tickets that are assigned the current user.

This is a huge leap forward in data security, but you’re not quite finished. You may have noticed that if
you edit one of the records on page 210, you can use the Next (>) and Previous (<) buttons in the lower-right
corner to see records that belong to other users. Thus, you need to plug this security hole as well:

15. Edit Page 210 of the application.

16. The location of the process Get Next or Previous Primary Key Value is shown in
Figure 9-28. Edit the process by clicking its name.

Chapter 9 ■ SeCurity

283

17. Change the value of Table Name to TICKETS_SECURE_V, as shown in Figure 9-29.
If you use the LOV, make sure you search the View tab. Click Save.

Figure 9-28. The location of the Get Next or Previous Primary Key Value process

Figure 9-29. Update the source for fetching the next record

Now all of your data is secured based on who is signed on to the system. Or is it?

Chapter 9 ■ SeCurity

284

Session-State Protection
One of the most common ways to compromise a web application is through a form of attack known as URL
tampering. You don’t need to be a programmer or hacker to launch this type of attack, all you need to do is
alter the URL in your browser. APEX introduced the session-state protection feature in release 2.2. When
enabled, it adds a checksum value to the URL. If any portion of the URL is altered, the resulting checksum
doesn’t match what is expected, and the page simply won’t render.

By default, APEX 5.0 enables session state protection at the application level and applies item-level
session state protection to any forms and reports that are built using the wizards. Thus, if a user were to
tamper with the APEX URL, it would prevent them from being able to see tickets assigned to other users.

Run the Tickets report on page 200 in the application. Hover your mouse over the Edit icon and examine
the URL. Notice the &cs= portion of the URL. The &cs= parameter is the checksum that was automatically
generated by APEX. Alter the value for P210_TICKET_ID in the URL, or remove &cs= and everything to the
right of it, and try to run the page. You will receive an error message similar to that shown in Figure 9-30.

Figure 9-30. Checksum error message as a result of URL tampering

Chapter 9 ■ SeCurity

285

Summary
In this chapter, you’ve applied new security to the Help Desk application by utilizing the key features of
APEX. You implemented a new custom authentication scheme to allow control over users who access the
sensitive parts of the application. You also reviewed conditional security with both authenticated and un-
authenticated individuals and added parameters to allow the application to be used by both.

Congratulations! You’ve just written your first APEX application. With the skills you’ve learned thus far,
you have the capability to create just about any type of system you’ll need. Take a moment to bask in the
glory of your achievement and then get ready to learn how to migrate your application from development to
other systems.

287

Chapter 10

Application Bundling and
Deployment

The concept of application bundling and deployment is something developers should consider from the
beginning when designing an application. In the case of APEX, built-in facilities help make the job easier.
When it comes to application deployment, there are various ways to accomplish the same end goal, and no
two IT organizations do it exactly the same way. This chapter will discuss the tools APEX provides to help
you bundle and deploy applications as well as how to use them in a very APEX-centric way.

■ Note Your organization may already have a standardized way to achieve many of the things being introduced
in this chapter. Before implementing any of these methods, check and make sure you’re not reinventing the wheel.

Identifying Application Components
Your APEX application consists of more than just the application export itself. There are underlying database
objects, images, Cascading Style Sheets (CSS), and JavaScripts. And these components may or may not be
stored on the same server as APEX, let alone stored in the APEX metadata repository. In essence, you need
to know how to assemble everything it would take to instantiate your application from scratch. Therefore, it’s
important to understand all the components that make up your application, where they’re stored, and how
to bundle them in a way that makes migration easier.

You can break the various components into roughly four main groups:

• External files: Your application may access files that don’t reside in the APEX
repository. For instance, your company may have a common set of CSS and image
files that are used by several websites in order to maintain a standard look and feel.

• Database objects: These include all the tables, views, PL/SQL objects, and any other
database objects used by your application. Most of the time these reside in your
application’s “parse as” schema.

• APEX-based files: These are files that have been uploaded into the Files section of an
application’s supporting objects. They may include images, CSS, JavaScript, static
files, and so on, and are stored in the APEX repository.

• APEX application export: This is the core of the APEX application, containing the
pages, regions, items, validations, and so on.

Chapter 10 ■ appliCation Bundling and deploYment

288

When it comes time to deploy an application, each of these types of files needs to be treated a bit
differently. The following sections address each file type and how to obtain the most recent version for
migration to an alternate platform. Later, the chapter will discuss using the Supporting Object feature of
APEX to bundle the appropriate items into the application export.

External Files
As already mentioned, external files exist outside of the APEX metadata repository and usually outside
the Oracle database as well. In the majority of cases, these files are placed in a directory structure on the
application server that provides the HTTP services for APEX. Usually they’re placed in a directory under the
document root (docroot) of the domain that is servicing APEX requests. Because they exist outside of APEX,
they can’t rightly be included in the supporting objects of an application, and thus need to be handled
separately from the other file types.

You must keep careful track of what files your application uses and whether those files have changed
during the development of your application. Another area of concern is whether other applications, APEX or
otherwise, use these same files.

For instance, version 1 of your application may reference a JavaScript file that is stored on the
application server. During the development of version 2 of the application, you may have made changes to
that file that need to be moved from the development server to QA or production. But what if your colleague
is working on another application that uses the same JavaScript file? You must be very careful about what
you change and how you deploy it so as not to inadvertently affect other systems.

When migrating these files from a development to a QA or production environment, you likely will need
to work with the people who are in charge of maintaining the application-server tier. They probably have a
process in place for planning the migration from one tier to another.

If you’re working on your own and are the sole person in charge of the file migration, it’s good to get
into the habit of maintaining a backup copy of the files you’re replacing, just in case something goes wrong.
You can do this simply by renaming the file currently in use to include some type of identifier for the version.
Including the date in the filename works well for this. In Linux, the command looks something like this:

mv my_old_file.js my_old_file_2015_09_17_12_37.js

If you’re using a source code control system and are tagging the file versions that are moved to
production, you may not need to take this extra step.

The key is making sure you can recover from any issues that may arise from overwriting a file. There’s
nothing worse than bringing a system to its knees with no easy way to get back to the previous state.

Database Objects
It may seem that database objects should be straightforward, considering that they exist in Oracle and
the SQL code for their definition can be recreated relatively easily. And for a brand-new application, this
assumption is fairly accurate.

However, the minute an application goes live, if you need to change the table structure, you can’t simply
replace the underlying tables with new versions. The users have probably entered or manipulated data in the
system, and it’s your job to make sure that when new versions of the system are rolled out, the integrity of the
data is maintained.

Chapter 10 ■ appliCation Bundling and deploYment

289

New Applications
When you’re deploying a brand-new application, a couple of tools can help you generate the scripts for the
underlying database objects. The Utilities menu in the APEX SQL Workshop contains a Generate DDL tool,
which does exactly what its name implies. If you run it against your application’s “parse as” schema, it allows
you to generate a SQL script containing the underlying database objects.

As shown in Figure 10-1, the wizard asks which of the available schemas you’d like to use as the basis for
the generated script.

Figure 10-1. Choosing the schema for which to generate object-definition scripts

The wizard then lets you choose what types of database objects to include in the script (see Figure 10-2).
Make sure you select all the object types that are used by the application. Selecting Check All gives you the
option of generating scripts for all objects in the selected schema. At this point you may also decide whether
you wish to show the generated script inline so you can copy and paste it, or save it as a script file to the
APEX script repository.

Chapter 10 ■ appliCation Bundling and deploYment

290

The next step of the wizard (see Figure 10-3) lists all the objects that match the types you selected
in the previous step. You can be as selective as you’d like about which objects to include. Your particular
application may only use a subset of the objects within a schema, so you only need to choose those when
generating the DDL.

Figure 10-2. Selecting the object types in the Generate DDL wizard

Chapter 10 ■ appliCation Bundling and deploYment

291

■ Note if you find yourself in a situation in which several applications are sharing the same underlying
schema, you may want to apply a naming convention to the database objects so you know which objects relate
to which application. a common database-object naming convention is to introduce a three-letter prefix to the
object names. For instance, the table USERS for the help desk application would become HDA_USERS. again,
check with your company to see if it already has an object naming convention.

If you’ve chosen to save the script to the APEX script repository, the next step allows you to enter the
name of the file to be created and a description, as shown in Figure 10-4.

Figure 10-3. Choosing the specific objects desired in the Generate DDL wizard

Chapter 10 ■ appliCation Bundling and deploYment

292

At this point, the script is generated, containing all the chosen objects. The generation engine does a
good job of creating objects that are dependent on other objects in the correct order so that no errors will
occur when the script is run. However, it’s always a good idea to test these scripts to make sure everything
runs smoothly.

Oracle’s SQL Developer product also has a tool that lets you generate DDL for a selected schema.
Figure 10-5 shows the splash screen of the SQL Developer Database Export tool.

Figure 10-4. Naming the script being created by the Generate DDL wizard

Chapter 10 ■ appliCation Bundling and deploYment

293

This tool is very similar to the APEX wizard, but it gives you more control over the format and contents
of the output, including whether to include schema names, storage clauses, grants, and so on. Another
benefit of SQL Developer is the ability to export the data that exists in the tables. This comes in very handy
for seed data that is needed for the system to function properly.

Whether you choose to use the APEX-based tool or SQL Developer, generating the object-creation
scripts for a new system is straightforward.

Existing Applications
For applications that have already been released into a production environment, the deployment process can
be much more complex. You need to take into account the version that is in production and how the underlying
database structure may differ from the version you’ve created in development and are ready to deploy.

Luckily, there are tools available to help identify the differences between two schemas. These tools can
also generate the necessary DDL scripts to implement the differences.

However, the unfortunate truth is that although the APEX SQL Workshop utilities do include a
schema-compare tool, it has some severe limitations. For one, both schemas that are being compared
must be available from the same workspace. This isn’t possible if your production schema exists on a
separate server, as it often does. The second limitation is that the APEX-based comparison tool identifies
the objects that are different, but it doesn’t say how they’re different, nor does it generate the DDL that
would be required to synch up the schemas.

Figure 10-5. The first screen of the SQL Developer Database Export tool

Chapter 10 ■ appliCation Bundling and deploYment

294

For this type of functionality, you have to rely on external programs or scripts. The following list
mentions a number of options, all of which can generate the scripts required to synchronize the production
environment’s database objects structure with the changes you may have introduced in development:

• SQL Developer: Oracle’s own product can run a full schema comparison between
two separate schemas on separate servers and generate a script that synchronizes
one schema with another. Older versions of this tool suffered from some problems,
but as of SQL Developer version 3.2, the comparison engine has been significantly
upgraded, and the generated scripts are solid.

• Oracle Enterprise Manager: If you have the Change Management Pack and Oracle
Enterprise Manager (OEM), then you can compare schemas and generate a
synchronization script. However, developers are very rarely given access to OEM
because it’s more of a database administration tool and would potentially give them
access to several sensitive utilities administrators would rather us not have access to.

• Schema Compare for Oracle: Red Gate Software has taken its extensive experience
in creating tools for the SQL Server market and turned its attention to the Oracle
database market. The result is a tool that allows you to compare, view, and generate
synchronization scripts between two Oracle schemas. This is probably the best
third-party tool on the market, but the one downside is that it only runs on Windows.

• TOAD for Oracle: TOAD (which originally stood for Tool for Oracle Application
Development) is a tool written and distributed by Dell’s software division (formally
Quest Software). Although it can do a lot more, the schema-comparison tool that’s
available as part of the DB Admin module is quite sophisticated and will generate
very clean and accurate scripts.

Whichever tool you use, the output is a script that, when run against the production environment,
executes the required DDL to alter the underlying database objects and bring them in line with what was
created in your development environment.

However, none of these tools take into account the data that may reside in the tables that are being
altered. Be very careful before you implement any of the generated upgrade scripts, understand what they
may do to the underlying data, and mitigate any risks of data loss or corruption.

This subject is huge and is beyond the scope of this book. There is no automated solution to the
problem of data migration between versions. More often than not, it boils down to handwritten scripts and
heavy testing.

APEX-Based Files
APEX provides the ability for developers to upload static files into the APEX metadata repository as part of an
application’s shared components. Figure 10-6 shows the Files section of the Shared Components page. There
are two types of files represented: those that are tied directly to the application and those that are available to
all applications within the current workspace.

Chapter 10 ■ appliCation Bundling and deploYment

295

Static Application Files may be any file type, such as CSS files, JavaScript files, images, documents, and
so forth, that you may need as part of your application. They can be referenced from within your application
by prefacing them with the #APP_IMAGES# replacement variable.

Because these items are tied directly to a specific application, they are automatically included when
you perform an application export (as discussed later in this chapter).

Static Workspace Files may also be any file type, but instead of being tied directly to an application,
they are made available to all applications within the current workspace by using the #WORKSPACE_IMAGES#
replacement variable.

Even though the Static Workspace Files are considered shared components, they aren’t included in
the application export. This means that you’ll need to migrate these items separately. You’ll be able to do
this from the same screen that allows you to upload them. You can either choose to download and migrate
individual files using the download link associated with that item, or choose to simply click the Download
as Zip button, after which you’re presented with a dialog that lets you export a zip file of all the Static
Workspace Files. Both options are seen in Figure 10-7.

Figure 10-7. The Static Workspace Files page allows for individual or bulk download

Figure 10-6. The Files section of an application’s Shared Components page

Files that are uploaded as shared components will likely be ones that you reference throughout your
application. They may represent portions of your theme, such as images for tabs or buttons, or they may
represent icons that you use to show status or that, when clicked, allow end users to edit rows of data.

One key differentiation to make is that the files uploaded to this area should not be directly related to
the application’s data. Things such as product images, images of employees, and the like should be stored in
the application’s “parse as” schema alongside the data to which the image is related.

Chapter 10 ■ appliCation Bundling and deploYment

296

APEX Application Exports
Overall, the APEX application export is easy to execute. The interface includes a process designed to
generate scripts for recreating APEX applications.

It’s important at this point to know what an application export includes and what it doesn’t. We’ve
already discussed the fact that the underlying database objects aren’t included, and neither is anything
that is uploaded to the Static Workspace Files section of the shared components. But all other shared
components, including Static Application Files, are included in the export file.

It’s worth mentioning that all configured and assigned shared components are included in the APEX
application export, whether they’re being used by the application or not. For instance, there can only ever be
one authentication scheme current for an APEX application, but more than one authentication scheme may
be configured and assigned to the application. The same is true for user-interface themes.

Although this isn’t strictly a problem, it’s good practice to delete any shared components that aren’t
being used by the application so that the size of the application export stays as small and as manageable as
possible. Most shared components provide a utilization report so you can see whether they’re being used.

The application export capability is located on the Application Builder main page in the Icon menu at
top of the page, as shown in Figure 10-8.

Figure 10-8. The Export option is located in the Icon menu at top of the page

When you initiate the wizard, it first prompts you as to whether you wish to import or export an
application. Once you select Export, you are taken to the Export page, as shown in Figure 10-9.

Chapter 10 ■ appliCation Bundling and deploYment

297

Figure 10-9. The Export Application page

You can choose the application to export by using the select list near the top of the page. The Export
Application section allows you to dictate how, in more general terms, the application should be exported.
It includes these options:

• File Format: It doesn’t relate to the target platform but instead to how the file is
generated with regard to carriage returns and line feeds.

• Owner Override: Allows you to override the currently assigned “parse as” schema by
either entering or selecting one.

• Build Status Override: Lets you select which build status is the default when the
application is imported. The default is Run and Build Application, but you may set
the status to Run Application Only.

Chapter 10 ■ appliCation Bundling and deploYment

298

• Debugging: Dictates whether the application is installed with debugging enabled or
disabled by default. Debugging is useful for applications in development. However,
as a best practice, you should turn off debugging for production applications so as to
prevent users from viewing things that may only show up while in debug mode.

• As Of: Allows you to export the application as it existed a number of minutes ago. For
this feature to work, Flashback Query must be enabled by the DBA at the database
level. The amount of time you may flash back is controlled by the UNDO_RETENTION
parameter at the database level.

■ Note although you can select default values for the settings in the export application section, it’s important
to understand that they can be overridden when the application is imported. at this point, you’re merely setting
the defaults for the import.

In the Export Preferences section, several options allow you to decide what is included in the
application export. The following options are available:

• Export Supporting Object Definitions: Dictates whether any supporting objects that
have been uploaded are exported with the application. See the “Supporting Objects”
section later in this chapter for a full description.

• Export Public Interactive Reports: Dictates whether report definitions saved by end
users and marked as public are exported as part of the application.

• Export Private Interactive Reports: Dictates whether report definitions saved by end
users and marked as private are exported as part of the application.

• Export Interactive Report Subscriptions: Dictates whether user subscription
information for interactive reports is exported as part of the application.

• Export Developer Comments: Dictates whether any comments developers have
entered against APEX components are exported as part of the application.

• Export Translations: Dictates whether translation mapping information is exported
as part of the application. Translation text messages and dynamic translations are
always included in the application export, regardless of the setting chosen here.

• Export with Original IDs: Dictates whether the export file should contain the
application component IDs as of now or as of the last import of this application.

Once you’ve chosen the appropriate settings, click the Export button to produce the application
export. You’re prompted to save it to your local machine. The export file name consists of the letter f
followed by the application ID, with a .sql extension. For example, an application with an ID of 9239 is
named f9239.sql.

The downloaded file contains a large text script that defines all the contents of the application built
in APEX. Along with the application pages are the shared components, including authentication schemes,
authorization schemes, themes in the application, UI settings, reports, and so on. This script can, in turn, be
imported into the same workspace, a different workspace, or even a different server.

Chapter 10 ■ appliCation Bundling and deploYment

299

Figure 10-10. Supporting Objects management home page

Supporting Objects
The application export captures the complete definition of your application, including most shared
components, but it doesn’t contain everything you would need to completely reconstitute your application
on another server. However, APEX provides a feature that allows you to bundle the scripts for things such as
the underlying database tables inside the application export. This feature is called Supporting Objects.

The Supporting Objects feature actually gives you a great deal more functionality than that. It also
provides the ability to create and control the installation, as well as to upgrade and uninstall anything that
can be scripted using SQL.

You reach the Supporting Objects management interface by navigating to the Shared Components page
for an application and selecting the Manage Supporting Objects option from the Tasks menu. Figure 10-10
shows the Supporting Objects home page.

The page is broken down into several regions. The Summary region at the top shows what is currently
defined in the supporting objects, and the three regions below (Installation, Upgrade, and Deinstallation)
allow you to edit the scripts and define the actions that are available during each phase.

Clicking any of the links takes you to a tabbed definition page, as shown in Figure 10-11.

Chapter 10 ■ appliCation Bundling and deploYment

300

Working through the tabs on this page lets you define the actions that are taken and any scripts that
should be run during each of the three phases. Although we won’t show a picture of the contents of each tab
here, in this section we will walk through each of them and discuss their contents and purpose, saving the
Messages tab for last.

Prerequisites
This section defines what built-in checks should be run to ensure that the database schema into which the
application is being installed has the appropriate privileges. You can provide a minimum amount of space
that is required for the application to work correctly. At installation time, the “parse as” schema’s default
tablespace is checked to be sure the appropriate amount of space is available. You can also check to make
sure the schema has any of the following specific privileges:

CREATE DATABASE LINK
CREATE MATERIALIZED VIEW
CREATE PROCEDURE
CREATE SEQUENCE
CREATE SYNONYM
CREATE TABLE
CREATE TRIGGER
CREATE TYPE
CREATE VIEW

The bottom region of the page allows you to list all objects that will be created by the supporting
object-installation scripts. At installation time, if any of the listed objects already exist, the install won’t
proceed, because there could be a clash. The user installing the application is given the details of which
objects are found to already exist.

Figure 10-11. Supporting Objects tabbed definition screen

Chapter 10 ■ appliCation Bundling and deploYment

301

This section may seem a bit limited in its scope, but the Validation section, discussed later, allows for
more free-form prerequisite checks.

Substitutions
This section provides the ability to allow the installing user to define the value for application-level
substitution strings at install time. Although substitution strings are meant to be used like static variables,
you may not always know what the value of these strings should be prior to installation. From this interface,
you can choose which substitution variables you want to let the installing user define and what the prompt
for each variable should be.

Substitution variables aren’t used very often, so this feature is also unlikely to be used. However, it’s
good to know that it’s there if you need it.

Build Options
In Chapter 13 we will speak about build options and the fact that they can be used to exclude or hide
assigned functionality. This section allows you to select whether build options you’ve defined are available
to the installing user. By selecting a build option, the user will be prompted as to whether they wish to
include or exclude the functionality associated with the build option.

Most of the time, when moving applications to production, you want to exclude all build options.

Validations
This section lets you define any number of pre-installation validations to be run. These validations are
similar to normal page validations and allow full control over whether the application installation can
proceed. You may have as many validations as you wish, and the validations may be conditional as well.

If any validation fails, the installation is halted, and the user is presented with the error message(s)
defined in the failing validation(s).

Install
This is the core of supporting objects and is where you define what scripts to run and in what order to install
all the objects your applications need to work properly. Here you can create and manage scripts that install
database objects, workspace or application images, CSS files, static files, and so on. Depending on the type of
scripts you’re including, you may be able to create them in different ways.

When it comes to scripts that create the underlying database objects, you’ve probably used a tool such
as SQL Developer or the SQL Workshop’s Generate DDL tool to generate a script to a file.

You can choose to upload a pre-created script file, to create the script from scratch, or to create a script
based on the definition of a database object in the application’s “parse as” schema. You do so via the Create
Script wizard shown in Figure 10-12.

http://dx.doi.org/10.1007/978-1-4842-0466-5_13

Chapter 10 ■ appliCation Bundling and deploYment

302

Choosing Create from Scratch presents you with a script-editing screen where you can type in the script
steps from scratch or copy and paste the script from a text editor. However, if you already have the script
stored in a file, you may want to use the Create from File option, which allows you to upload the script from
your local computer.

The Create from Database Object option presents you with a wizard that allows you to choose which
objects that exist in the application’s “parse as” schema to include in the script. Once you choose the objects,
the wizard builds the creation script for you and presents it for editing. You can then save the script as part of
the Supporting Objects installation sequence.

The main difference when creating scripts from the database objects is that APEX keeps a record of
which objects you chose and allows you to go back and refresh the script against the underlying “parse as”
schema, add new objects you may need, or even delete ones you don’t. This is potentially much more useful
that using an external script-generation tool as it integrates directly into the application export. However,
some IT departments require the underlying database object–creation scripts to be separated from the
application export as a point of control. Again, make sure you know what your company’s procedures are for
moving applications to production and follow the standards.

However it is generated, once a script has been created, you’re allowed to alter the script’s name, its
sequence of execution, and the condition under which it will be run.

Whether you have several scripts, one for each object or object type, or one large script that creates
all the required objects is completely up to you. Just make sure that if you choose to have several scripts,
you test their execution in the order they’re listed in the interface to make sure any dependencies are
accounted for.

Figure 10-12. Create Script wizard

Chapter 10 ■ appliCation Bundling and deploYment

303

Upgrade
The Upgrade tab is very similar to the Install tab, as it allows you to create or upload scripts. But in this case,
the scripts are used to upgrade an existing application’s supporting objects if the installer finds that the
application is already installed in the workspace.

The installer does this by letting you write a query to check for the preexistence of supporting objects
in the schema. If the query returns one or more rows, then the upgrade script set is run in place of the install
script set.

Deinstall
This section allows you to define a single script that drops the objects created by the install or upgrade
scripts. When you generate install scripts for supporting-object files, API calls to deinstall these files are
added to the deinstall script automatically. However, you need to add the necessary code to drop the
appropriate database objects manually.

Export
The Export tab simply lets you set the default for whether the supporting objects are included when you
export the application. This option is also available on the Supporting Objects main screen.

Messages
The Messages page gives you control over the verbiage presented to the installing user during the
installation of the application. The section text that you can edit is as follows:

• Welcome: After successfully importing and installing an application definition, the
installation wizard prompts the user to install supporting objects for the application.
This message introduces the application and describes the actions of the installation
scripts.

• License: If the use of this application requires the user to accept a license, enter
the license text here. The user is prompted to accept the message before installing
supporting objects. If there is no text for the license, this step is skipped in the
installation wizard.

• Application Substitutions: Introduces the application-substitution prompts. It should
probably state that these values aren’t easily changed and to be sure of their values
before entering them. If there are no application-substitution variables to be entered,
this message doesn’t display.

• Build Options: Introduces the build options that may be available for the user to
select. If no build options are available, the step is skipped and the message doesn’t
display.

• Validations: Introduces the validations that will be performed prior to installing the
supporting objects. If there are no validations, the step is skipped and the message
doesn’t display.

• Confirmation: Displayed just prior to the installation scripts being run and the
configuration options being applied.

Chapter 10 ■ appliCation Bundling and deploYment

304

• Post-Installation Success: Shown after the application’s supporting objects have been
installed successfully with no errors.

• Post-Installation Failure: Shown after the application’s supporting object scripts have
run, but only if errors were generated. The user can view the errors that occurred.

• Upgrade Welcome Message: Provides a message informing the user that the installer
has detected preexisting supporting objects and that the Upgrade wizard will
now be run.

• Upgrade Confirmation Message: Presents a message prior to running the upgrade
scripts to allow the user to choose whether to continue.

• Upgrade Success Message: Shown after the suporting objects upgrade script is run
successfully with no errors.

• Upgrade Failure Message: Shown after the suporting objects upgrade script is run,
but only if errors were generated. The user can view errors that occurred.

• Deinstallation Message: Presented just prior to running the supporting objects
deinstallation script.

• Post-Deinstall Message: Presented just after running the suporting objects
deinstallation Scrip.

■ Note Because all script types are standard SQl and pl/SQl, you have the option of writing quite complex
logic that can decide within the script what steps to take. however, there is no interactivity or shared session
state between the individual scripts, so you can’t decide in the first script whether to run the second or third
scripts. every script in the set will be run regardless of the result of the previous scripts. errors are shown only
after all scripts have been run.

The process of building a packaged application that includes supporting objects can be daunting. The
good news is that, in a standard IT environment, the scripts to migrate database objects are rarely processed
using supporting objects. Although supporting objects are very useful, they tend to lend themselves to
situations, such as shrink-wrapped software, in which applications are sent to remote sites where there is
little or no direct interaction with the installing user.

For applications that are being developed and deployed in a single organization, rules and guidelines
are probably in place for migrating applications to production. Make sure you check with your organization
and adhere to those standards.

Importing
APEX applications can be imported by providing the application-export script. You can import into a
different workspace or into the original workspace. The Application Import wizard is available from the
Application Builder home page. Figure 10-13 shows the initial page of the wizard.

Chapter 10 ■ appliCation Bundling and deploYment

305

As you can see, the wizard allows you to import many different types of APEX export scripts. Make sure
you choose the right type for the file you’re trying to import. When importing an application export script,
click Browse to choose the application export file, and be sure to choose Database Application, Page, or
Component Export.

The page in Figure 10-14 indicates that the application export file has been uploaded from your
computer to the server. Remember that the application file is a script. Although it has been uploaded at this
stage, it hasn’t yet been run; therefore, the application isn’t installed.

Figure 10-13. Import file identified as a database application

Chapter 10 ■ appliCation Bundling and deploYment

306

Clicking the Next button initiates the steps to install the application into the current workspace. APEX
prompts for a few key pieces of information, as shown in Figure 10-15.

Figure 10-14. File upload success. Continue to install the application

Chapter 10 ■ appliCation Bundling and deploYment

307

Figure 10-15. Installing the application into the workspace

At this point, choose the parsing schema and the build status, and then decide how to treat the
application ID. The parsing schema can be any of the database schemas associated with the workspace.
The build status lets the application be set to a runtime mode, which is useful for production environments;
the default allows run and build (or edit) mode. The final option pertains to the application ID values; the
default option is to assign a new application ID when installed, which lets the same application exist in the
workspace multiple times—each time under a different ID.

If you choose to reuse the application ID from the export file or to change the application ID to one of
your choosing, APEX checks to see if an application with that ID already exists. If an application with that
ID does exist in the same workspace, you’re prompted as to whether you wish to replace the application
currently assigned to that application ID with the one you’re importing. If an application with the selected
ID exists but is in a different workspace, you’re prohibited from using that application ID. This protects you
from accidentally overwriting applications in other workspaces.

Chapter 10 ■ appliCation Bundling and deploYment

308

If the application has supporting objects, the next screen asks whether you want to install those
supporting objects. It also gives you the option of previewing the supporting object scripts that will be run.

To continue installing the supporting objects, select the Yes radio button and click the Next button.
The wizard then walks through all the steps that were set up when you created the supporting objects. It
performs any prerequisite checks and validations and decides whether to run the install or upgrade scripts.
The user is presented with any choices and options related to substitution strings and build options.

Finally, you’re asked to confirm the installation (or upgrade) of the supporting objects. Continuing with
the wizard runs the appropriate scripts. If there were errors during the scripts, the errors are presented to
you to view. If there weren’t any errors, you’re given the opportunity to see the installation summary or to
edit or run the application.

Summary
As you’ve seen, APEX has a robust, built-in migration capability. The export and import tools are easy to use
and very functional. The additional ability to construct installation scripts to manage the database side of an
application goes a long way toward your being able to deploy self-standing applications in one process. But
remember that some files may need to be migrated manually because they don’t fall into the realm of what
APEX can handle via supporting objects.

309

Chapter 11

Understanding Websheets

Websheets were a new marquee feature of APEX 4.0 and deliver end-user control over both web content
and structure. In the early days of APEX, when it was still known as Project Marvel and later as HTML DB,
some people thought that end users could use APEX to develop their own applications. Although this was
true for simple spreadsheet-like applications, most end users weren’t comfortable building web applications
that needed an underlying normalized database together with snippets of SQL, PL/SQL, and JavaScript.
Websheets now fulfill the early promise of end-user development for web content like blogs, wikis, and very
simple business applications. Websheets give end users this power without forcing them to learn how to
normalize a database or write code. Everything in websheets, except a few optional, advanced features,
is declarative.

Websheets have been designed so that they’re easy to use. However, like all computer tools, there is an
associated learning curve. That’s the bad news. The good news is that the learning curve is very shallow.
The tool relies heavily on wizards that lead you intuitively through the content-creation processes.

This chapter will outline the underlying structure of websheets, describe the navigation style, and
highlight some of the handy features that will make you productive. This chapter will concentrate on what
websheets can do, while Chapter 12 will focus on how websheets are built by leading you through some
step-by-step scenarios. After reading this chapter and working through the next chapter, you will be able to
quickly create professional-looking web content.

■ Note As you read this chapter, you may find yourself wondering how to create some of what is discussed.
Not to worry—the examples in the next chapter will provide an in-depth look at the major tasks involved in
creating a websheet. This chapter will provide the background that will enable you to follow along with and fully
understand the upcoming examples.

Websheet Structure
The fundamental building blocks of a websheet (see Figure 11-1) are simple to envision. A websheet is a
container for web pages. The web pages, in turn, are containers for sections. A section, which is similar to a
region in an APEX database application, contains your content. Annotations are used to enhance both the
content and the search functionality.

http://dx.doi.org/10.1007/978-1-4842-0466-5_12

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

310

There are five section types:

• Text: Text sections contain text that is easily formatted. Links to other content and
images are embedded within the text by using very simple markup syntax.

• Navigation: Navigation sections help you navigate through your hierarchy of pages.
Creating these sections requires very little thought or effort on your part. You can
also set up navigation within a long page by using section navigation.

• Data: Data sections are used to display data in a row-and-column format that is
similar to a spreadsheet. There are two types of data sections: report and data grid.
A report is used to display read-only data from outside your websheet (i.e., from
tables in a schema assigned to the workspace). Data grids are spreadsheet-like
objects that you build. You’re responsible for defining the columns, adding
data-entry business rules, providing default values, and so on. If you’ve used
spreadsheets, you’ll find this work relatively easy to do.

• Chart: Chart sections are used to display graphs. Chart sections get their data
from data sections. You link a chart section to a data section by using a simple and
intuitive wizard.

Figure 11-1. Websheet structure

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

311

• PL/SQL: Users with PL/SQL knowledge can create PL/SQL sections and write their
own code against the associated schema. PL/SQL sections are available only if the
websheet application developer has enabled the Allow SQL and PL/SQL attribute on
the Websheet Properties page.

Navigation
We speak of websheet navigation in two contexts. First, we discuss navigating through a websheet’s content.
Second, we discuss navigating through the pages that are used to build a websheet. Be mindful that, in
practice, you frequently flip back and forth between these two contexts.

In both contexts, there are usually several ways to navigate to a given page or section. The duplicate
navigation choices might cause you a bit of confusion at first. However, after you work with websheets for a
while, the navigation choices become helpful and intuitive. This chapter doesn’t document every possible
navigation path; instead, it shows you where to look for navigation links so that you can quickly find a
comfortable navigation style that works for you.

Content Navigation
Content navigation enables you to quickly go to pages and sections within a page. Page navigation is
mandatory and is created for you as you create the websheet hierarchy. Section navigation is optional and is
useful on long pages that require a lot of vertical scrolling.

Page navigation is created by the websheet itself automatically by adding hierarchical breadcrumbs.
In Figure 11-2 (a screenshot of the websheet you will build—a soccer team management application), the
hierarchical breadcrumbs are found in the drop-down menu at left, which contains links to Players, Results, and
Schedule. For small websheets, the breadcrumbs and the right-side navigation sections might be all you need.

Figure 11-2. Page navigation created by the websheet

Second, you can add page navigation manually by creating a page-navigation section. You can also
embed explicit page links in the page content (see Figure 11-3). The details for adding a page-navigation
section are discussed later under the heading “Navigation Sections.” Embedded links are discussed in detail
in the “Markup Syntax” section.

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

312

Section navigation is optional. It’s useful for content-heavy pages that require a great deal of scrolling
to reach the bottom of the page. Section navigation is almost identical to page navigation (see Figure 11-4).
The main difference between page and section navigation sections is the lack of hierarchy in section
navigation; sections have no children.

Figure 11-3. Page navigation created by the user

Figure 11-4. Section navigation created by the user

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

313

Structural Navigation
Structural navigation is utilized to access the pages that are used to build and update the structure and
content of websheets. On most websheet pages, two areas enable you to access the structural pages
(see Figure 11-5). The first area contains the drop-down menus at the top of the page. These menus don’t
change from page to page. The second area is located on the right side of every page. This area contains a
set of sections that, in turn, contain links to the various structural pages. These sections and links vary from
page to page and are tailored to the page’s context.

Figure 11-5. Structural navigation

Figure 11-6. Help link

In addition to these areas, some structural links are embedded in the content sections. These
embedded links are convenient for getting to the Edit page for the content that is currently being displayed.

Help
Don’t overlook the Help link (see Figure 11-6). The help is clear, concise, and useful. Clicking the Help link
invokes a context-appropriate pop-up page that contains mostly static information that you can read at your
leisure. We strongly recommend that you do so; it takes only a few minutes.

In addition to the static information, one tab contains dynamic information. The Application Content
tab contains complete lists of all the websheet’s pages, sections, files, images, data grids, and reports
(see Figure 11-7). These lists are presented in Interactive Reports that you can tailor to suit your needs.

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

314

All of the Interactive Reports contain a column that displays the explicit markup syntax that enables you
to embed links to the listed objects directly in your content. This saves you the effort of having to remember
the details of the markup syntax and type it manually; you also avoid the aggravation of debugging typos.

An example of how the markup syntax is used is shown in Figure 11-8. A link to the Results page is
embedded in the content found in the Important News text section. Clicking the Edit link in the Important
News text section takes you to the corresponding Edit page (see Figure 11-9), where the underlying markup
syntax for this example is illustrated.

Figure 11-7. Application Content tab

Figure 11-8. Resulting content of markup syntax

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

315

Markup Syntax
The markup syntax that is used to embed links in your web content looks a bit like a computer language.
End users might find the syntax a bit intimidating; however, the syntax structure is simple, forgiving, and well
documented on the Help page:

 [[LINK_TYPE: LINK_TARGET | LINK_NAME]]

The opening and closing delimiters are two square brackets that are easy to read. LINK_TYPE is a
keyword with a trailing colon. The available link types are described in Table 11-1.

Figure 11-9. Embedded markup syntax

Table 11-1. LINK_TYPEs and Descriptions

page: Links to a page in the websheet

section: Links to a section in the websheet

url: and popupurl: Links to a URL

file: Downloads the target file to the user’s computer

image: Displays an image on the page in a text section

data grid: or datagrid Links to a data grid’s Edit page

report: Links to a read-only report page

sql: Displays the result of an SQL statement in a grid

sqlvalue: Displays a single value from an SQL statement

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

316

LINK_TARGET specifies the object that is displayed when you click the link. For a page link, LINK_TARGET
is the page alias. For a file, LINK_TARGET is the file name or alias. The only exception to this pattern is the
sql: LINK_TYPE. The sql: LINK_TYPE’s LINK_TARGET isn’t a link; it’s an SQL statement that returns data in
rows and columns. The SQL data is automatically displayed when the page is displayed. The sql: syntax
is also referred to as SQL tags, and this feature must be turned on by an administrator in the application
properties area. This is covered later in the “Reports: Setup” section.

A vertical bar character separates LINK_TARGET and LINK_NAME. The only fussy part of the syntax is the
single spaces that must precede and follow the vertical bar.

LINK_NAME contains the text that is embedded in the page’s content. The user clicks this text to follow the
link. There are two exceptions to this pattern. First, the image LINK_NAME is optional and can be replaced by
HTML markup. For example, you can use HTML markup to resize the image. Second, the sql: LINK_TYPE
has no LINK_NAME. LINK_NAME isn’t required, because the SQL data itself is automatically embedded in the
page content.

The markup syntax is forgiving. It’s case insensitive, and the websheet code makes several friendly
assumptions. For example, if you omit LINK_TYPE, the websheet scans its metadata for LINK_TARGET. If
an exact match is found, the websheet assumes that this is the target for which you were looking. In other
words, you can be a bit sloppy with the syntax and still get the correct result.

User Authentication
User authentication governs how users log on to a websheet. There are four options:

• Application Express Account: Websheet users log on to the websheet by using the IDs
and passwords that have been set up in the APEX workspace that hosts the websheet.

• Single Sign-On: Oracle’s single sign-on (SSO) technology enables users to sign in to
their computing environment one time and then access all their applications, such
as websheets, without having to re-enter their username and password. This is an
advanced feature that is out of scope for a beginning book.

• LDAP: Lightweight Directory Access Protocol (LDAP) is used by websheets
to provide SSO capability in computer environments that use non-Oracle
authentication schemes. This is an advanced feature that is out of scope for a
beginning book.

• Custom: This advanced feature will be explicitly explained and illustrated in Chapter 12.

The authentication method is normally chosen when the workspace administrator initially creates the
skeleton websheet. If the websheet has been set up using Application Express Account authentication and
you’re logged in to the workspace as an Application Express developer, you can edit the authentication type
from the Websheet Properties, as shown in Figure 11-10.

http://dx.doi.org/10.1007/978-1-4842-0466-5_12

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

317

Figure 11-10. Authentication set to Application Express Account for a websheet

When you click the Edit Authentication button, you’re redirected to the websheet’s Application
Properties page in the Application Builder (see Figure 11-11).

Figure 11-11. User-authentication options displayed in the Application Builder

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

318

When you’re using the Application Express Account authentication option and also are logged in to
the Application Builder, clicking the Edit Authentication button takes you out of the websheet and directly
into the Application Builder. This transition may not be obvious to you at first, because the page bodies are
similar. You need to verify your context by looking at the top of the page and the menus. See Figure 11-11.

If the websheet is using SSO, LDAP, or custom authentication, you must log in to the APEX Builder
as either an APEX administrator or a developer. After you log in, navigate to the websheet’s Application
Properties page, where you can pick the desired authentication scheme and configure it. The details of the
example shown in Figure 11-11 will be discussed in Chapter 12.

User Authorization
Websheets have three authorization roles:

• Reader: This is the read-only role. Figure 11-12 is a websheet home page as seen by
a reader. The page contains content together with navigation objects. When you drill
down into data pages, you can see the data but not the buttons that are used to add,
change, and delete data.

Figure 11-12. Websheet home page as seen by a reader

http://dx.doi.org/10.1007/978-1-4842-0466-5_12

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

319

• Contributor: This role is allowed to add, change, and delete a websheet’s content
plus manipulate the structure. Figure 11-13 is the websheet home page as seen by
a contributor. Notice the rich set of functionality that is added for this role. The top
drop-down menus contain links to the structural pages. The text sections contain
Edit links. The right-side sections contain links to the structural pages. When you
drill down into the data pages, you can see the buttons that allow you to add, change,
and delete the content.

Figure 11-13. Websheet home page as seen by a contributor

• Administrator: This role can create and delete websheets. It’s responsible for
maintaining a websheet’s global properties and maintains the list of users who can
access the websheet. Figure 11-14 is the administrator’s view of the websheet home
page. The only addition to the contributor’s view is the Administration drop-down
menu at the top of the page.

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

320

The websheet administrator configures user privileges through the Access Control list, which is found
under the Administration drop-down menu (see Figure 11-15). This task is usually done after you set up the
authentication scheme.

Figure 11-14. Websheet home page as seen by an administrator

Figure 11-15. Navigating to the Access Control list

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

321

The Access Control list is simple to create and maintain (see Figure 11-16). Create a new entry by
clicking the Create Entry button. Change an existing entry by clicking the pencil icon in the list. In both
cases, you’re taken to the Entry Details page, which has only two fields: the username and the privilege level
(see Figure 11-17).

Figure 11-16. Access Control list

Figure 11-17. Entry Details page

The Access Control list is somewhat sensitive to the authentication scheme that is used. When you
use SSO, LDAP, or a custom authentication scheme, the Access Control list is mandatory. In this context,
it’s easy to understand and build. You build the Access Control list as a duplicate of the list of users in the
authentication scheme. The hook between the two lists is the username. The websheet username must
match the user ID in the authentication scheme.

When you use the Application Express Account authentication scheme, things get a little harder to
understand. In this instance, using the Access Control list is optional. Because the websheet is inside
an Application Express workspace, the websheet can directly use the existing APEX user accounts. The
websheet privileges are inferred from the APEX user-account privileges. Table 11-2 illustrates the translation
between the APEX workspace privileges and the websheet privileges. You can override the default
translation by adding the APEX users to the Access Control list. For example, you might want an APEX
workspace administrator to have the reader privilege on a given websheet. To do this, you add the APEX
workspace administrator’s ID to the Access Control list and set the privilege to reader.

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

322

Websheets can be set up for public access. This means that anyone who invokes the websheet’s URL is
allowed to access the websheet with the reader role. Logging in with an ID and password isn’t required. You
can set this up by going to the websheet’s Properties page in the APEX Application Builder and changing the
Allow Public Access control under the Authorization section. See Figure 11-18.

Table 11-2. Access Control Configuration

Authentication Scheme No Access Control List With an Access Control List

Application Express
Account

APEX administrator = websheet admin
APEX developer = websheet contributor
APEX end user = websheet reader

The Access Control list overrides
the inferred APEX websheet
privileges.

Single Sign-On NA - Access Control list is mandatory. Access Control ID must match
SSO ID.

LDAP NA - Access Control list is mandatory. Access Control ID must match
LDAP ID.

Custom NA - Access Control list is mandatory. Access Control ID must match
custom ID.

Figure 11-18. Navigating to the Application Properties page

Select Yes in the Allow Public Access drop-down menu and click the Apply Changes button. Now,
when you run the websheet application, you’re automatically logged in as the user “nobody” with reader
privileges. Administrators and contributors who need to update the websheet’s content can log in by using
the Sign In link that appears at the upper right on all the websheet’s pages (see Figure 11-19).

Figure 11-19. Public websheet with Sign In link

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

323

Sections
Sections contain your content. The following chapter sections will illustrate useful features found in
the websheet structural environment by showing you the Edit pages for existing objects. Step-by-step
procedures for creating new websheet objects will be covered in Chapter 12.

Text Sections
Text sections contain text, embedded links, and images. Text sections can be used to create wikis and blogs.
To start a wiki, the original author creates a text section and then invites contributors to edit the text section’s
content. To start a blog, the original author creates a text section and then invites contributors to add more
text sections in reply to the first section.

To access a text section’s Edit page, you click the Edit link in the upper-right corner of the text section
(see Figure 11-20).

Figure 11-20. Navigating to a text section’s Edit page

The Edit page for a text section is simple and clean when it’s invoked. By default, the collapsible regions
are collapsed (see Figure 11-21). The upper-right collapsible region link, a small arrow icon, contains the
text-formatting controls. Expanding this section by clicking the icon displays an edit palette that is similar to
what you might expect from your favorite word processor.

Figure 11-21. Edit page for a text section, collapsed

http://dx.doi.org/10.1007/978-1-4842-0466-5_12

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

324

The lower-left link, Data Grid SQL Syntax, contains links to information on how to access data from the
data grids in your websheet. Clicking the links presents a pop-up page with cut-and-paste syntax for many
data queries and links.

Finally, the section on the left contains a list of all the sections on the page. Clicking any one of the
section names allows you to edit the properties and/or content for the section. This region also has a toolbar
across the top that lets you perform various tasks. See Figure 11-22.

Figure 11-22. The Sections toolbar on the Edit Section page

When you expand the collapsible regions, you can see the considerable scope available for enhancing
your content (see Figure 11-23). The upper-right icon expands into a section that contains a number of
formatting icons. We don’t describe each formatting icon’s function in detail; they’re intuitive because
they’re similar to other tools, like a word processor, that you probably use regularly.

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

325

Other elements available include the following:

• The list of page sections at the bottom of the page shows you where the current
section fits within the page relative to the other sections.

• The Help section contains direct links to the Help page tabs.

• The Tasks section contains links to processes that automate moving the section to an
existing or new page.

The Show History link will be explained in the “Administration” section later in this chapter.

■ Note Many pages contain collapsible regions at the bottom of the page. some of the regions contain help
text; others contain lists of things that help give you a sense of place and context, which in turn helps you to
get your content right. in all cases, the collapsible regions found at the bottom of pages are useful.

Figure 11-23. Edit page for a text section, expanded

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

326

Navigation Sections
The most important aspect of adding navigation sections to your web content is the fact that adding
them takes very little effort or thought on your part. Navigation sections are easy to use because they’re
declarative, and the websheet takes care of virtually all the details like the page links and formatting. The
details of adding navigation sections will be discussed in Chapter 12.

A page-navigation section is shown in Figure 11-24. Clicking the Edit link takes you to the Edit page (see
Figure 11-25). The Edit page has five inputs:

• Sequence: Positions the section among the other sections on the page

• Title: The title of the section

• Starting Page: Lets you start the navigation tree on pages that are below the home
page in the page hierarchy. In this example, a user could add a page-navigation
section to the top of their personal page that shows only the pages below their
personal page in the hierarchy.

• Maximum Levels: Limits the number of levels displayed in a page-navigation section.
In this example, if you set the Maximum Levels value to 3, you would see only the pages
shown in Figure 11-24 even if a user adds child pages under their personal page.

• Order Siblings By: Allows you to choose the sort order of all pages at the same level.
Options are Page Name, Created Date, and Updated Date.

Figure 11-24. Page-navigation section

Figure 11-25. Edit page for a page-navigation section

http://dx.doi.org/10.1007/978-1-4842-0466-5_12

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

327

A section-navigation section is shown in Figure 11-26, and you can see the Edit page in Figure 11-27.
The only inputs are the sequence and title. In this case, the websheet takes care of all the other details. You
don’t have to do any work.

Figure 11-26. Section-navigation section

Figure 11-27. Edit page for a section-navigation section

Data Sections
There are two types of data sections: Data Grids and Reports. Data Grids are spreadsheet-like objects that
you create entirely within a websheet. Reports display read-only data from external database tables or views
that are located outside the websheet.

We will look at data grids first because they’re native to websheets and are what you’ll likely use the most.

Data Grids
A data grid is the most complex part of a websheet. However, if you’ve had a bit of experience with a
spreadsheet, you probably won’t have much difficulty learning how to use a data grid in a websheet.

This section will highlight some of the features of data grids. Chapter 12 will walk you through the steps
that are required to create a data grid from scratch.

Data grids are used to organize data in a column-and-row format. Both the design and the data are held
in the websheet environment; no external configuration is required.

Both data grids and reports can be put into data sections, and you can embed links to them in text
sections. Figure 11-28 shows a data grid that is displayed in a data section. In this context, the data grid is
read-only, like a report. The Edit link goes to a page that allows you to edit the data section, but not the data
grid itself.

http://dx.doi.org/10.1007/978-1-4842-0466-5_12

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

328

You can navigate to the context where you maintain the data grid’s data by using the Data Grid
drop-down menu (see Figure 11-29). You can either navigate to an individual data grid directly from the
menu or click its link from the View All report.

Figure 11-28. Data grid displayed in a data section

Figure 11-29. Navigating to a data grid’s data-entry context

Figure 11-30 shows the Schedule data grid. The search text box, the Go button, the Reports
drop-down list, and the Actions drop-down menu are standard Interactive Report features that were
discussed previously.

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

329

However, unlike traditional Interactive Reports, here you can change the data directly in the data grid.
When you click a cell, the cell turns into an editable item, and you can type data directly into it. If you’ve
configured a column as a date, a pop-up calendar automatically appears to help with accurate date entry.
You can also configure a column to have a list of values; when this is defined, the cell contains a drop-down
list. In addition, you can use the pencil icon to the left of the grid to link to a Form page that edits an
individual row (see Figure 11-31). This is convenient when the data grid contains many columns and is too
wide for your computer screen.

Figure 11-30. Editing data in a data grid

Figure 11-31. Editing data on a Form page for one row

You manage the structure of a data grid by selecting options from the Manage drop-down menu.
Figure 11-32 and Figure 11-33 show all of the data-grid configuration options.

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

330

An interactive edit section is displayed as a modal dialog when you select one of the Manage menu
options. This is shown in Figure 11-34. The edit sections all contain their own Cancel and Apply buttons. You
must click the Apply button to save your changes.

Figure 11-32. Data-grid management, column options expanded

Figure 11-33. Data-grid management, row options expanded

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

331

The Manage drop-down menu gives you a rich set of options that allow you to use a data grid as a
simple and friendly spreadsheet-like application. Most of the options are simple to use; they’re illustrated in
more depth in Chapter 12. The Manage menu options are summarized next:

• Properties: Lets you edit the overall data-grid properties.

• Toggle Checkboxes: Toggles the row-selection checkboxes on and off. The
row-selection checkboxes are used to perform bulk updates on selected rows.

• Columns:

• Add: Adds a new column to the data grid.

• Column Properties: Changes the properties of a column after it
has been created.

• List of Values: Creates a named list of values. A named list of values
can be used in more than one data grid.

• Column Groups: Creates column groups.

• Validation: Adds data-entry validations. Validations are chosen from a defined
list of business rules. You can use several validations simultaneously to achieve
a result. For example, to make sure a number is greater than zero, you can
use the Column Specified Is NOT Zero validation together with the Column
Specified Doesn’t Contain Any of the Characters in Expression validation, and
you would enter a minus-sign character in the Validation Expression text area.
This last point illustrates the fact that all of the underlying data in a data grid
is text, and that sometimes you need to use more than one validation rule to
achieve a single result.

• Delete Columns: Deletes one or more columns.

• Rows:

• Add Row: Displays the data-entry page, where you can enter new data.

• Set Column Values: Enters data into many rows in a single column. A value can
be set for All Rows, Selected Rows, or Empty Rows.

• Replace: A find-and-replace feature that is similar to that found in text editors
and word processors. It can be applied to All Rows or Selected Rows.

Figure 11-34. Data-grid management, Data Grid Properties menu option

http://dx.doi.org/10.1007/978-1-4842-0466-5_12

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

332

• Fill: Fills a column’s null cells with the value found above them.

• Delete Rows: Deletes rows from the data grid. This is done for All Rows, Selected
Rows, or Rows with Empty Columns.

• Delete Data Grid: Deletes the data grid from the websheet.

• Copy: Makes a copy of the data grid.

• History: An audit trail for the data.

Reports: Setup
The Report feature and the related SQL Tags feature require a small amount of setup by the administrator
before contributors can use them. Start the setup process by navigating to the APEX Application Builder and
editing the websheet’s properties. In the SQL and PL/SQL section (see Figure 11-35), set Allow SQL and
PL/SQL to Yes. After you do this, click the Add Object button to display the page shown in Figure 11-36. This
page enables you to create a list of suggested objects. The list of suggested objects is an optional convenience
that automatically creates a drop-down list of database objects together with helpful comments.

Figure 11-35. Websheet report and SQL tag setup

Figure 11-36. Creating the list of suggested database objects

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

333

■ Note When you set Allow sQL and pL/sQL to Yes, you’re giving contributors access to all the database
objects in the websheet’s default schema. This is a potentially serious security issue. it’s imperative that you
chat with your Oracle database Administrator (dbA) before you use this feature to make sure sensitive data
isn’t accidentally exposed.

Reports: Creation
After you’ve set up the Allow SQL and PL/SQL feature in the Application Builder, return to your websheet.
You create a report by selecting New Report from the Report menu (see Figure 11-37) or by clicking the
Create Report button from the View All report.

Figure 11-37. Choosing the New Report option

Figure 11-38. Creating a report based on a table or view

The Create Report page prompts you for one of two report sources (see Figure 11-38). The Table report
source creates a report that contains all the columns in the selected table or view. The SQL Query report
source (see Figure 11-39) creates a report based on an SQL statement. Using an SQL statement gives you
a tremendous amount of flexibility in tailoring a report to your needs. In both cases, click Next to go to a
confirmation page and check your input before creating the report.

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

334

Reports: Accessing the Data
Users want, of course, to see the report data. Report data is exposed in three ways:

• Navigate to a report: Figure 11-40 shows you where to find the list of reports under
the Report drop-down menu. Clicking the report’s Name link in the menu takes you
to the Report Data page. Figure 11-41 shows the Authorized System Users report
from this example.

Figure 11-39. Creating a report based on an SQL statement

Figure 11-40. Navigating to a report

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

335

• Embed a link to the report in a text section: The list of reports in Figure 11-40 contains
an Embed Tag column. This column contains the markup syntax that you would
need to add a link to the report in a text section. You simply copy and paste the
markup syntax into the text section to add a link that takes you to the Authorized
System Users report shown in Figure 11-41.

• Create a data section: Creating a data section based on a report is easy. A wizard
walks you through the steps. You first navigate to the page that will contain your
report and click one of the New Section links in either the drop-down menu or
the Control Panel at the right side of the page (see Figure 11-42). This starts the
Create Section wizard. Select the Data icon on the first page and click Next
(see Figure 11-43). Now, link the data section to its data source (see Figure 11-44).
In this example, you’re linking the data section to the Authorized System Users
report. This page allows you to link your data section to any data grid or report that
you’ve previously created. Click Next, which takes you to the confirmation page.
Once you click the Create button on the confirmation page, you will find yourself
back on the content page, and your report is displayed in the new data section
(see Figure 11-45).

Figure 11-41. Report data page

Figure 11-42. New Section link

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

336

Figure 11-43. New Section wizard: choosing a section type

Figure 11-44. New Section wizard: data source

Figure 11-45. Data section containing a report

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

337

Chart Sections
Chart sections are an easy way to add graphics to your content. First, you must create a report or data grid
that contains at least one numeric column. Second, you run the Create Chart wizard. The wizard links the
report or data grid to the chart and sets up the axis labels. The details and visual result of this simple process
will be covered in Chapter 12.

Annotations
Annotations are used to add additional content to your pages or individual rows in data grids. There are four
types of annotations:

• Files: Two types of files can be uploaded into your websheet. Image files are
displayed within text sections. Other file formats, such as PDFs, can be uploaded to
a websheet and then downloaded to the end user’s computer. In both cases, you use
markup syntax to achieve the result.

• Tags: Tags are free-form text words that are attached to content to enhance the
websheet’s Search feature.

• Notes: Notes are like sticky notes. When you add a note, it appears in a section on the
right side of the page.

• Links: Links allow users to navigate to any valid URL. Annotation links are associated
with rows in a data grid; they can’t be associated with a page. To add a link to a page,
you would use markup syntax, not an annotation.

Figure 11-46 shows the Annotation section that appears on a websheet page. Clicking the various links
allows you to add, change, and delete annotations.

Figure 11-46. Annotation section at lower right on a page

http://dx.doi.org/10.1007/978-1-4842-0466-5_12

ChApTer 11 ■ UNdersTANdiNg WebsheeTs

338

Administration
Websheets, like any blog or wiki, should be reviewed periodically by a moderator who has been given the
administrator role. This allows the moderator to view the Dashboard and Monitor Activity pages
(see Figure 11-47). These pages and the underlying reports give the moderator the tools to see which pages
are the most and least popular, how long it takes to render a page, who is using the websheet, and many
other parameters that help the moderator make sure the websheet is working optimally.

Figure 11-47. Navigating to the Dashboard and Monitor Activity pages

As you work through Chapter 12, notice the links that are labeled History. These History links are placed
throughout the websheet’s structural navigation areas. They take you to context-sensitive report pages that
contain comprehensive audit trails of websheet changes. Contributors, when they know their changes are
audited, will make an effort to hold their contributions to a high standard.

Summary
This chapter has given you a good look at websheets so that you can use them in innovative and creative
ways. Chapter 12 complements this chapter by working through, on a step-by-step basis, the construction of
a websheet from the ground up.

http://dx.doi.org/10.1007/978-1-4842-0466-5_12
http://dx.doi.org/10.1007/978-1-4842-0466-5_12

339

Chapter 12

A Websheet Example

The previous chapter covered many of the different features of websheets. In this chapter, you will use these
features to build an application from scratch.

The example application manages a corporate soccer team. Currently, the player roster and schedules
are maintained in spreadsheets. When the schedule is updated, the spreadsheet is emailed to all the players.
As you can imagine, it would be very frustrating to manage a team this way.

A websheet is a good way to manage the soccer team, because websheets can be built with minimal
developer or DBA assistance. All the files, along with a copy of the final application, can be found in the
example download described in the introduction to this book.

Setup
In order to highlight the capability of websheets to interact with objects in your database, let’s create some
database objects that are referenced throughout the chapter. These objects simulate an existing users table
and login function for your organization:

1. Run the following code, which is included in the example download as a script
named ch12_database_objects.sql, in SQL*Plus or directly in APEX using SQL
Workshop:

-- Create Users Table
CREATE TABLE tusers (
 user_id NUMBER (5, 0) PRIMARY KEY,
 user_name VARCHAR2 (10) NOT NULL UNIQUE,
 password VARCHAR2 (10) NOT NULL,
 active_flag VARCHAR2 (1) NOT NULL
);

-- Create sequence for IDs
CREATE SEQUENCE sn_users;

-- Create Users
-- Note: You should not store passwords in clear text.
-- This was done for demonstration purposes.
INSERT INTO tusers (user_id, user_name, password, active_flag)
 VALUES (sn_users.NEXTVAL, 'martin', 'martin', 'Y');

Chapter 12 ■ a Websheet example

340

INSERT INTO tusers (user_id, user_name, password, active_flag)
 VALUES (sn_users.NEXTVAL, 'chris', 'chris', 'Y');

INSERT INTO tusers (user_id, user_name, password, active_flag)
 VALUES (sn_users.NEXTVAL, 'cameron', 'cameron', 'Y');

-- Authentication Function
CREATE OR REPLACE FUNCTION f_login (p_username IN VARCHAR2, p_password IN VARCHAR2)
 RETURN BOOLEAN
AS
 v_count PLS_INTEGER;
BEGIN
 SELECT COUNT (user_id)
 INTO v_count
 FROM tusers
 WHERE LOWER (user_name) = LOWER (p_username)
 AND password = p_password
 AND active_flag = 'Y';

 IF v_count = 1 THEN
 RETURN TRUE;
 END IF;

 RETURN FALSE;
END f_login;
/

COMMIT;

Creating and Configuring a Websheet Application
To create a websheet application, you need to have access to APEX Builder. Once you’ve logged in, proceed
with the following steps to create the websheet application:

1. Navigate to the Application Builder.

2. Click the Create button.

3. Select Websheet for the application type, as shown in Figure 12-1, and click Next.

Chapter 12 ■ a Websheet example

341

4. On the next screen, enter Grizzlies Soccer for Name and use the default ID for
Websheet. Deselect the Include Getting Started Guide checkbox.

5. Click the Create Websheet button.

You should now see a success page with the option to run the websheet (see Figure 12-2).

Figure 12-1. Creating a websheet application

Figure 12-2. Websheet Created success page

Chapter 12 ■ a Websheet example

342

The Grizzlies are your corporate soccer team, so you’d like to be able to have users log in using their
current corporate accounts. To use the corporate authentication, you need to configure the application and
modify the authorization scheme.

Because you haven’t defined an authentication scheme, you need access to APEX Builder to modify
the application properties. This is the last portion of the process which requires APEX Builder access. The
following steps describe how to modify the application properties:

1. Click the Application Builder tab at the top of the page to return to the
Application Builder home page.

2. Edit the new application you created (Grizzlies Soccer) by clicking on either the
name or the icon.

3. Modify the items in the following sections:

• Attributes: Enter DD-MON-YYYY for Application Date Format, as shown in Figure 12-3.

Figure 12-3. Application date format

• Authentication: Select Custom as the authentication type and replace -
BUILTIN - with the statement return f_login in the Authentication Function
field, as shown in Figure 12-4. Leave all the other inputs at their default values.
(f_login refers to the function you created in the “Setup” section of this
chapter.)

Chapter 12 ■ a Websheet example

343

• SQL: Select Yes for Allow SQL. This lets you reference tables and views in the
underlying schema. After you select Yes, an Add Object button appears. Click
Add Object and enter TUSERS for Object Name, as shown in Figure 12-5. This
will allow users to quickly select the TUSERS table when creating reports. Click
the Create button, which brings you back to the application properties page.

Figure 12-4. Custom authentication

Chapter 12 ■ a Websheet example

344

4. Authorization: Before you can use a custom authentication scheme, you
need to define an administrator for the application. To do so, click the Edit
Access Control List button.

On the new page, click the Create Entry button. In the Username field, enter
martin, and select Administrator for Privilege, as shown in
Figure 12-6. Click Create to register martin as an administrator. You’re
brought back to the Access Control List page. Click the Cancel button to
return to the application properties page. Click Apply Changes button to
save your changes.

Figure 12-5. Adding an object

Figure 12-6. Access Control List: adding an administrator

Chapter 12 ■ a Websheet example

345

Adding Content to a Websheet
In the previous section, you created and configured a websheet application to manage your corporate soccer
team. In this section, you will create data grids and add content to the application.

Run the websheet application and log in as martin/martin, the site administrator. Once you’ve logged
in, the page should look like Figure 12-7. You’re now ready to create your first data grid.

Figure 12-7. Initial websheet application

■ Note the Url to run the websheet application is <apex_url>/ws?p=<web_sheet_id>. For example:
http://www.example.com/apex/ws?p=103, where 103 is the websheet application ID.

Creating Data Grids
The first thing to do is to create some custom tables called data grids. Just a reminder: data grids exist only in
the context of the websheet application. They don’t exist as tables in a schema. There are two ways to create
data grids: by pasting in existing data from a spreadsheet or from scratch by manually defining each column.
In this section you will create data grids with both methods.

http://www.example.com/apex/ws?p=103

Chapter 12 ■ a Websheet example

346

You currently keep the game and practice schedules in a spreadsheet. You can import data and
simultaneously create a data grid using copy and paste. Here is the process to follow:

1. Click the Data Grid tab at the top of the application.

2. Click the New Data Grid option in the drop-down menu.

3. Select Copy and Paste as the input method and click Next.

4. Enter Schedule in the Name and Alias fields.

5. Open Grizzlies_Schedule.csv, which can be found in the sample code for this
chapter, in Microsoft Excel and select all the fields, including the header. Copy
these values and paste them into the Paste Spreadsheet Data text area. Ensure
that the First Row Contains Column Headings checkbox is checked and click
the Upload button.

6. You should now see the data in an interactive report, as shown in Figure 12-8.

Figure 12-8. Data grid result

Chapter 12 ■ a Websheet example

347

You also need to create a data grid to keep track of the number of goals each player scores. You don’t
have any existing data ready to copy and paste from a spreadsheet, so this time it makes sense to create the
data grid manually. Here are the steps to follow:

1. Click the Data Grid tab at the top of the application.

2. Click the New Data Grid menu option.

3. Select From Scratch as the input method and click Next.

4. Fill out the data grid definition, as shown in Figure 12-9, and click the Create
Data Grid button to finish creating the data grid.

Figure 12-9. Creating a data grid from scratch

Applying Constraints
Now that you have data grids, you need to add some constraints to them. Because data grids aren’t database
objects, you must use the websheet interface to apply constraints.

In the Players data grid, you need to ensure that all the fields contain data and that the default for the
Goals column is 0. To apply these constraints, follow these steps:

1. Click the Data Grid tab.

2. Click Players in the drop-down menu.

3. Click the Manage button and select Columns ➤ Column Properties, as shown
in Figure 12-10.

Chapter 12 ■ a Websheet example

348

4. Select Name in the Column Name select list.

5. Select Yes for Value Required.

6. You must explicitly save your changes before modifying another column. Click
the Apply button at the bottom.

7. Open the Column Properties section again (repeat Step 3).

8. Select Goals in the Column Name select list.

9. Select Yes for Value Required.

10. In the Default Text field, enter 0.

11. Click Apply.

Now, when you create players, both Name and Goals are required values. Goals defaults to 0.

Adding Players
To add players to the Players data grid, click the Add Row button. For this example, add the players and their
goals as shown in Figure 12-11.

Figure 12-10. Data grid column properties

Chapter 12 ■ a Websheet example

349

Creating Alternate Default Reports
Now that you have data in the data grids, you can create alternate default reports, which you can reference
when creating sections. Data grids allow you to save reports just like interactive reports do. Alternate default
reports are saved data grid reports that can be displayed throughout your websheet application.

■ Note some of the reports that you’ll create are date sensitive. Normally, you’d use SYSDATE as a reference
point. Instead, you’ll use a static date of 10-Jun-2010 to simulate a common SYSDATE. this ensures that you
will see the same data as that shown in this book.

The first alternate report highlights the games and practices for the next two weeks. To create this
report, follow these steps:

1. Navigate to the Schedule data grid using the Data Grid tab.

2. Click the Actions button and select Filter.

3. Select Row for Filter Type.

4. Enter Next Two Weeks for Name.

5. Enter the following for Filter Expression:

B >= to_date('10-jun-2010', 'dd-mon-yyyy')
and B < to_date('10-jun-2010', 'dd-mon-yyyy') + 14

6. Click the Apply button.

7. Order the Date column as ascending by clicking the Date column heading and
choosing the Ascending sort icon.

8. Hide the Grizzlies and Opponents columns, as you don’t have scores for future
games. To do this, choose the Select Columns option from the Actions menu.

9. Choose Actions ➤ Save Report.

Figure 12-11. Player data

Chapter 12 ■ a Websheet example

350

10. Select As Default Report Settings in the Save select list.

11. Select Alternate for Default Report Type and enter Next Two Weeks for Name.

12. Click Apply. The report should now look like that in Figure 12-12.

Figure 12-12. The next two weeks

Because you’ve already learned how to manipulate and create saved interactive reports, create the
following alternate default reports for the Schedule data grid:

• Remaining Games: This report lists all the games left in the season.

• Remaining Practices: This report lists all the practices left in the season.

• Results: This report lists all the games that have been completed along
with the scores.

Creating Page Sections
In this section, you will modify existing pages and create new sections. You will cover some of the different
types of content that you can add to websheets.

To start, you’ll modify the home page by creating several sections that help players get the most
important information right away. Modify the Welcome section to contain important news by following
these steps:

1. Click the View tab at the top.

2. Select the Home page in the drop-down list.

3. In the Control Panel at the right of the page, click New Section.

4. Choose Text as Section Type and click Next.

5. Enter Important News for Title.

Chapter 12 ■ a Websheet example

351

6. Enter the following in the Content section:

Fees: Don’t forget to pay your fees before the next game (13-Jun) or else you
can’t play!
We won our last game and are now 2–1. Check out the[[results | Results]]page.

The special notation involving the square brackets creates a link to the Results
page that you will create later in this chapter.

7. Click the Create Section button.

Figure 12-13. Important news

The home page should now look like Figure 12-13.

■ Note Notice that the link to the results page is in red. that’s because you created an invalid link. Once
the results page is created, the link will turn grey.

Next, you’ll create a new section on the home page to highlight the upcoming games and practices.
This section references one of the alternate default saved reports that you created earlier. To create the
section, follow these steps:

1. While viewing the Home page, click the New Section link at the right, located in
the Control Panel region.

2. Select Data for Section Type and click Next.

3. Select Schedule for Data Grid and Next Two Weeks (Alternative Default) for
Report Settings to Use. Change Title to Upcoming Games and Practices.

4. Select a style (use 2 for all sections in this example), and click Next.

5. On the confirmation page, click the Create Section button.

The new section should look like Figure 12-14.

Chapter 12 ■ a Websheet example

352

Each week, the coach likes to highlight a player of the week. The coach wants to include a picture along
with some text in this section. This week, Martin is the lucky recipient of the Player of the Week award. To
create the Player of the Week section, follow these steps:

1. First, you need to upload the player’s picture. In the File region at the right, click
the Plus link, as shown in Figure 12-15.

Figure 12-15. Adding a file

Figure 12-14. Upcoming games and practices

2. Click the Browse/Choose File button and select martin.jpg from the files
associated with this chapter. Click the Add File button. You’re brought back to
the home page.

3. Click the New Section link.

4. Select Text as Section Type and click Next.

5. Enter Player of the Week for Title.

6. Enter the following in the Content text area:

Martin scored 2 goals!

[[image: martin.jpg]]

7. Click Create Section.

The Player of the Week section should now contain an image, as shown in Figure 12-16. Each week, the
coach can easily upload a new picture and modify this section.

Chapter 12 ■ a Websheet example

353

You also need a page to display the list of players and that includes a graph to show the top scorers on
the team. To create and modify the player’s page, follow these steps:

1. Click the New Page link at the right.

2. In the Name field, enter Players. For Page Alias, enter PLAYERS. Select Home for
Parent Page. Click the Create Page button.

3. Add a new section called Players, which is a Chart section referencing the
Players data grid.

4. To add the graph, click the New Section link.

5. Select Chart for Section Type and click Next.

6. Select Column for Chart Type and click Next.

7. Select Players for Data Grid, select Primary Report (Primary Default) for
Report Setting to Use, and enter Goals for Section Title. Click Next.

8. Modify the chart section as shown in Figure 12-17 and click Next.

Figure 12-16. Player of the Week section

Chapter 12 ■ a Websheet example

354

Figure 12-18. Goals chart

Figure 12-17. Chart definition

9. On the confirmation screen, click the Create Section button.

The new chart region should look like Figure 12-18.

Chapter 12 ■ a Websheet example

355

The last modification you need to make for the Players page is to add a navigation section. This allows
users to quickly go to each section on the page rather than having to scroll down the page. To add the
navigation section, follow these steps:

1. Click the New Section link.

2. Select Navigation for Section Type and click Next.

3. Select Section Navigation for Navigation Type and click Next.

4. Enter 1 for Sequence. Setting the sequence to 1 makes it the first section on the
page. Click the Create Section button.

When someone views the page, they can quickly navigate to each section via the navigation section.
You should now be comfortable creating and modifying pages. Before you create the final section,

create the following pages, which are child pages of the home page:

• Results: This page displays the Results saved report. The Results page should look
like Figure 12-19.

Figure 12-19. Results page

• Schedule: This page contains two sections. The first section displays the Remaining
Games saved report, and the other section displays the Remaining Practices saved
report, which you created earlier. The Schedule page should look like Figure 12-20.

Chapter 12 ■ a Websheet example

356

The next section you will create provides a list of all the pages, along with links to them. To create this
navigation section, follow these steps:

1. Go to the Home page.

2. Click the New Section link.

3. Select Navigation for Section Type and click Next.

4. Select Page Navigation for Navigation Type and click Next.

5. If you want to, modify Title and set Sequence to 1, and then click the Create
Section button.

The new section should look like Figure 12-21.

Figure 12-20. Schedule page

Chapter 12 ■ a Websheet example

357

SQL Tags
Websheets allow administrators and contributors to query tables and views in the schema. They can create
reports that are similar to data grids, except they’re read-only. They can also include query results called
SQL tags directly within sections.

On the Players page, let’s add a section to display the number of registered users who have access to the
application, and include a SQL tag in the section. To create the section, follow these steps:

1. Go to the Players page.

2. Click the New Section link.

3. Select Text for Section Type and click Next.

4. Set Sequence to 5 and Title to Active Registered Users.

5. Enter the following text in the Content section and click the Create Section
button:

We currently have[[sqlvalue: select count(*) from tusers where active_flag = 'Y']]active
registered users. They are: [[sql: select initcap(user_name) "Name" from tusers order by
user_name]]

The new section should look like Figure 12-22. Notice the select count query in the first line of the
preceding code. That query generates the value 3 that is shown as the number of active users in the figure.
Similarly, the second select statement in the preceding code generates the list of player names.

When using SQL tags, you need to explicitly define whether the query will return a single value or
multiple rows and columns. A SQL tag defined as sqlvalue: means a single value will be returned and be
embedded within a sentence such that the single value appears as a word in the sentence. Using sql: means
multiple rows and columns will be returned. When a query returns multiple rows, its results are displayed in
the spreadsheet-like format you see in Figure 12-22.

Figure 12-21. Page navigation

Chapter 12 ■ a Websheet example

358

The search box in Figure 12-22 is a result of the second query returning multiple rows. Whenever a
query’s results are displayed as a spreadsheet-like grid, that grid is preceded by a search box that you can use
to quickly find specific result rows.

Access Controls
The last thing you need to do for the application is to give the other players on the team access to it. You
already gave access to Martin when you created the application. You need to give the other players, Chris
and Cameron, access to view the application. To do so, follow these steps:

1. Click the Administration tab at the top of the screen.

2. Click the Access Control option in the drop-down menu.

3. Click the Create Entry button.

4. Enter Chris for Username and select Reader for Privilege. Click the Create and
Create Another button.

5. Enter Cameron for Username and select Reader for Privilege. Click Create.

Now Chris and Cameron can log in to the application. They can’t modify any of the sections or data
grids, however. If you need to give someone access to modify the ap plication, you can grant them the
Contributor role in the Access Control section.

Summary
The last two chapters introduced websheets and what they can do. From here, you can go on to make
complex websheet applications without having to know much about databases or SQL. Now that you have
a base knowledge of websheets, installing and analyzing the websheet sample application would be a good
next step to understanding the capabilities of a websheet.

Figure 12-22. Section with SQL tags

359

Chapter 13

Extended Developer Tools

While developing the sample application in the previous chapters, you saw many features of the APEX
development tool. This chapter will highlight advanced development features in APEX that weren’t covered
in the previous chapters. These features or tools may help when you’re developing large applications in a
corporate environment.

■ Note This chapter assumes that you’re comfortable with APEX and understand the fundamentals. If you’re
still not comfortable developing an APEX application, we strongly recommend that you revisit the examples from
Chapters 5 through 9 in order to become more at ease with APEX and its development environment.

Page Locks
When developing in larger teams, development conflicts can occur. A development conflict is when two
developers are working on the same object at the same time and overwrite each other’s changes.

■ Note For the remainder of this chapter, references to APEX objects imply page items, regions, lists, pages,
and so on.

Conventional web development tools, such as ASP, PHP, and JSP, contain multiple files that each
represent a page or a set of functions in the web application. When developing with these tools, it’s common
practice to use a source-control tool, such as Subversion, to manage all the changes. Source-control tools
can easily manage development conflicts between multiple developers, because the conflicts are isolated to
a single file.

APEX is different than the scripting languages just mentioned because developers don’t work with files.
All the information is stored in tables in the database. When you create an export of an application, you get a
single SQL file that loads the metadata for the application into these tables. Because APEX stores its content
in the database, you can’t use traditional source-control tools to manage conflicts when developing in teams
with multiple developers.

http://dx.doi.org/10.1007/978-1-4842-0466-5_5
http://dx.doi.org/10.1007/978-1-4842-0466-5_9

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

360

APEX Conflicts
To demonstrate a development conflict in APEX, imagine that you have two developers, Mina and Natalie,
working on the same page in an application. If they’re both adding and modifying page components at the
same time, the page may not behave as expected for either of them.

APEX prevents developers from modifying the same object at the same time by performing optimistic
locking. Table 13-1 shows the sequence of events that occurs as the two developers edit the same object. You
can see at the end how APEX prevents Natalie from overwriting the changes made by Mina.

Table 13-1. Optimistic Locking Scenario

Step Mina Natalie

1 Edit P1_EMPNO --

2 -- Edit P1_EMPNO

3 Edit help text to: “Mina’s Help” --

4 -- Edit help text to: “Natalie’s Help”

5 Apply changes --

6 -- Apply changes

7 -- Receive error message: Current version of data
in database has changed since user initiated
update process. Current row version identifier
= "A08A505E601932E33BC1074BEA1A3B4C"
application row version identifier =
"AECE767E4BDDC737A7823083A31D564F"
Contact your application administrator.

Figure 13-1. Locking a page

Optimistic locking only works when developers modify the same object. The problem occurs when
multiple developers are modifying different objects on the same page at the same time. Modifying one
object may affect the process of the entire page, which other developers may not be aware of. Pessimistic
locking helps prevent trouble in that scenario. The next section will discuss how to do pessimistic locking.

Locking an APEX Page
The easiest way to prevent issues from occurring when developing an application with multiple developers
is to lock a page before working on it. Locking a page prevents other developers from modifying the page
while you’re working on it. Developers can still view the page and its components while a page is locked;
they just can’t make any modifications to the page.

The following process locks a page:

1. In the Page Designer, click the Lock icon in the Page Designer Toolbar, as shown
in Figure 13-1.

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

361

You will see a pop-up dialog that allows you to enter a comment or reason as to
why you are locking the page.

2. Enter a value for Comment (all page locks require a comment) and click Lock.
The dialog will be dismissed, and the lock icon will have changed to solid green
with a closed padlock.

Entering meaningful page-lock comments is important, because a history of page locks is maintained.
If you use a case-management tool, it’s smart to reference the case number that you’re working on when
locking a page.

If another developer views a locked page, they see the lock icon as solid red with a closed padlock.
Clicking on the lock icon will open a pop-up dialog indicating who locked the page and the comment they
entered at the time. Figure 13-2 shows an example of a locked page and the pop-up dialog.

Figure 13-2. Locked page

Unlocking a Page
Only APEX administrators, workspace administrators, and the developer who locked a page can unlock it. If
you’re the developer who locked a page, the following process demonstrates how to unlock it:

1. Go to the locked page (page 1 from the previous example) and click the Lock
icon in the Page Designer Toolbar.

2. You’ll see the pop-up dialog showing the current lock comment. From here you
can either alter your comment and save the changes or click the Unlock button
to unlock the page.

Administering Page Locks
Developers may want to see all the pages that are locked, or they may want to lock/unlock multiple pages at
the same time. APEX provides tools to handle multiple page-lock requests. To view the Page Locks report,
in the Page Designer Toolbar go to Utilities ä Cross Page Utilities and then choose Page Locks, as
shown in Figure 13-3.

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

362

From the Page Locks report, you can view all the pages that are locked and unlocked. You can lock and
unlock multiple pages from this report. Workspace administrators can unlock any page, but developers can
only unlock pages that they locked. Developers can also view the lock history for each page by clicking the
View Lock icon, which looks like a magnifying glass.

■ Note Page locks aren’t maintained in the new version when an application is copied or exported. This
means any page locks and comment histories are only relevant to the specific application in the workspace.
If you copy an application into another workspace, nothing is locked in that new copy.

Application and Page Groups
Developing large APEX applications may require you to group applications and pages. APEX allows you to
declaratively group applications and pages in applications. Grouping pages and applications can help you
avoid the need to have strict application and page naming and numbering schemes.

Application Groups
When you have multiple applications in a workspace, you may want to group associated applications to
help developers visualize which applications are related. For example, suppose you develop a large CRM
system that consists of three modules: Marketing, Service, and Sales. For various reasons, you may want
to create each of these modules in its own application and have a common Admin module that links the
applications together.

Figure 13-3. Page Locks report

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

363

If your workspace contains other suites of applications, developers may get confused about which
suite of applications they’re working on. To resolve this issue, you can create application groups. Here is the
process to create an application group:

1. Navigate to the Application Builder.

2. Click the Workspace Utilities icon.

3. Click the Application Groups option from the Workspace Utilities menu.

4. Click the Create button.

5. Enter Name and Description values for the group. In this example, use CRM. Click
Create.

The following steps demonstrate how to add individual applications to an application group:

1. On the Application Groups page, click the Manage Unassigned link at the right
in the Tasks region.

2. Select the group in the New Group select list and then choose the
applications by selecting the checkboxes. Click the Assign Checked button,
as shown in Figure 13-4.

Figure 13-4. Assigning application groups

3. Go to the Application Builder main page and view the applications in a report
format. You can use the Actions menu to add the Group column to the report.
This allows you to view the list of applications, along with their application
group, as shown in Figure 13-5.

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

364

Page Groups
Page groups are similar to application groups except that they group pages together. They’re application
specific, which means a page group is only valid for a particular application. Page groups are very useful to
help group common pages in an application.

An alternate approach to using page groups is to use a numbering scheme to group pages together. The
page-number approach may not always work, however, because you may run out of numbers. For example,
imagine that you group logical pages in sets of 10. What happens when you have 11 pages in a group? Of
course, a workaround is to create large intervals for each logical page group, but even so you may run into a
situation where a page doesn’t conform to your numbering standards.

■ Note You can also use page groups for purposes other than in the development environment. suppose
you grouped all the admin pages into an Admin page group. If you had a Global Page region that you wanted to
appear only on admin pages, you could add a condition to check that the current page was associated with the
Admin page group.

To create and manage page groups, from the Application page in APEX go to Utilities ➤ Page Specific
Utilities ➤ Page Groups. On the Page Groups page, you can create and assign page groups in a way similar to
how you created application groups in the previous section.

APEX Views and the APEX Dictionary
In traditional web development tools, if you need to search through all your code, you must comb through
multiple text files. APEX is different because it stores code in the database. Thus, you can run queries to
search through your code.

Figure 13-5. Application report

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

365

The APEX Schema
A common misconception about APEX is that it’s an extra piece of software that you need to install. In fact,
APEX is a framework that is stored in a schema in the database. At a very high level, each time you request
a page, APEX queries the tables in its schema and executes many invocations of the HTP.P procedure to
produce the HTML that is sent to the browser.

Each time you create an object in APEX, it’s stored in a table in the APEX schema. For example, when
you create a page item, it’s stored in the APEX_050000.WWV_FLOW_STEP_ITEMS table.

■ Note As mentioned in Chapter 1, APEX was originally called FLOWS, and pages were originally called
STEPS, which is why some of the table names contain these references.

Storing code in the database has advantages and disadvantages. An advantage is that you can query the
database to quickly find what you’re looking for in an organized fashion. For example, you can easily search
through all your reports for a certain table or column reference. A disadvantage is that it’s harder to search
through all the objects in an APEX application at the same time. At last count, the APEX_050000 schema has
over 450 tables. Searching through an entire application is easier in file-based web applications, because you
can do a simple text search.

APEX Views
The APEX views give the developer visibility into the metadata that makes up the applications in the current
workspace. There are several ways to access the data from these views. This section will discuss how to use
these views to search in the APEX development environment.

To access the APEX views in the development environment, navigate to the Application Builder home
page and then go to Workspace Utilities ➤ Application Express Views. If you’re new to APEX, we recommend
that you change the default view mode to View Report, which provides a detailed description of each of the
reports (see Figure 13-6).

Figure 13-6. APEX views

http://dx.doi.org/10.1007/978-1-4842-0466-5_1

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

366

The following example demonstrates how the APEX views can assist you. Suppose you need to compare
the help text for items that reference PRODUCT_ID. Follow these steps to do this:

1. Go to Workspace Utilities ➤ Application Express Views.

2. Click the APEX_APPLICATION_PAGE_ITEMS view. You may need to search for
this view in the interactive report or navigate to the next page.

3. On the Select Columns screen, add ITEM_NAME and ITEM_HELP_TEXT to the
Selected column and click the Filter button, as shown in Figure 13-7.

Figure 13-7. Select Columns view

4. On the Filter page, select ITEM_NAME for Column, select LIKE for Condition,
and enter '%TICKET_ID%' for Value, and click the Results button, as shown in
Figure 13-8. It’s important to include the single-quote characters around your
search value just as you would in a SQL query.

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

367

5. You should now see the list of all page items in the workspace that have TICKET_
ID as part of the item name. Based on these results, you can modify the items that
need to be changed. Because the report shows all applications in the workspace,
you may want to apply an additional filter for a specific application.

Alternatively, you can view the list of APEX views as a tree by clicking the Tree View tab shown in
Figure 13-9. The tree view provides an excellent method of understanding how one view relates to another.
Once you click your desired view, you can continue with the process just described to display the results.

Figure 13-8. Filter view

Figure 13-9. Tree view

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

368

APEX Dictionary
Because all the data resides in the database, you can reference the APEX views from SQL queries. As you
become more familiar with the APEX views, you may prefer to query them using SQL because you can
quickly apply predicates and you don’t need to use a web browser to run reports.

APEX provides a view called APEX_DICTIONARY that lists all the APEX views. The APEX Dictionary
contains all the information that is available in the developer GUI as well as descriptions for each of the
columns. The following query lists all the APEX views:

SELECT *
 FROM apex_dictionary
 WHERE column_id = 0

There is a slight difference when querying the APEX views in SQL compared to the GUI. When you
use the developer GUI, only applications that reside in the workspace appear in results. When you query
through SQL, only applications whose parsing schema is the same as your connection appear in results. If
you connect as SYS, SYSTEM, or a user who has been granted the APEX_ADMINISTRATOR_ROLE, you can view all
the applications regardless of the application’s parsing schema.

In the previous section, the example described how to look at all the help text for items with TICKET_ID
in their name. You can view the same set of results by running the following query:

SELECT workspace,
application_id,
application_name,
page_id,
page_name,
item_name,
item_help_text

 FROM apex_application_page_items
 WHERE item_name LIKE '%TICKET_ID%'

Searching isn’t the only use for the APEX views. You may also need to use the APEX views when you’re
creating plug-ins or adding advanced features to an application.

Searching in APEX
The previous section examined how to use the APEX views to search for items in your application. In this
section, you will learn alternative ways to search through an application

APEX Finder
APEX provides a tool in the application that provides some reports that use the APEX views on common APEX
objects. To access the APEX Finder, navigate to any application’s main edit page (the one where APEX shows
you the list of all pages in the application). On this page, click the Find icon (which looks like a flashlight and
is located in the upper-right corner), as shown in Figure 13-10.

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

369

Clicking the Find icon opens a pop-up window that contains interactive reports for the following
object types:

• Application and page items

• Pages

• SQL queries from report regions

• Database tables in the parsing schema

• PL/SQL packages, functions, and procedures in the parsing schema

• Images, including standard images, workspace images, application images, and Font
Awesome icons

• A list of debug log entries

• Application items, page items, and collections and their values in the current session

• A list of errors that have occurred in this application at both the region and page levels

The APEX finder is helpful because it allows you to quickly search for something while you’re in the
Application Builder and doesn’t require you to leave the page. If you need more complex searches or filters,
we recommend querying the APEX views.

Search Application
The APEX Views Utility, which queries against the APEX views, and the APEX finder are good tools if you
know exactly what you’re searching for in an object type. For example, if you want to see whether a particular
table was referenced in a query, then you can search the APEX_APPLICATION_PAGE_REGIONS view for the table
name in the REGION_SOURCE column.

What if you want to search an entire application to see whether it references a specific table? Suppose,
for example, that you rename the TICKETS table to ISSUES. How can you easily search your entire application
for any reference to TICKETS? The answer is to use a feature called Search Application, which searches
through the entire application.

To search the entire application, enter your search criteria in the Search Application field by clicking the
Magnifying Glass icon (located in the upper-right corner—see Figure 13-10). Figure 13-11 shows the detailed
results of all occurrences of TICKETS in the application. For each result, a link is provided to the exact
location of the result. Using the Search Application feature, you can easily find all references to the TICKETS
table and replace them with ISSUES.

Figure 13-10. Find icon

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

370

The problem with the results in Figure 13-11 is that they contain results for all text that contains
TICKETS. This includes labels, HTML, and so on. Although this may not seem like a problem, consider
searching for the EMP table. Your results might contain things such as template, employee, empno, and more.
Because you only want references to the table with respect to SQL queries and PL/SQL blocks, you might
want to exclude all occurrences of your search where its previous or next character is alphanumeric.

Regular expressions, which are supported by the APEX Search Application tool, can be used to
accomplish this. The search criteria must be prefixed with regexp: in order to use regular expressions.
Figure 13-12 shows Search Application when a regular expression is used to filter out occurrences of emp
where its previous or next character is alphanumeric. To learn more about regular expressions and Oracle’s
implementation of them, refer to the Oracle database documentation. Look in particular at the SQL
Reference manual.

Figure 13-11. APEX Search Application results

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

371

Monitoring Your APEX Application
APEX can log each page access and login attempt. Logging is an excellent feature to enable, because it allows
you to monitor your application and provides a way to help reduce errors and improve performance. This
section will show you how to enable logging, some uses for the activity log, and how to view all login attempts.

Enabling Logging
By default, logging is enabled when you create an application. To verify that logging is enabled for your
application, go to Shared Components and click the Application Definition Attributes link in the Application
Logic region at the top left. In the Properties section is a Logging option, as shown in Figure 13-13. Ensure
that it says Yes and click the Apply Changes button.

Figure 13-12. APEX search using a regular expression

Figure 13-13. Enabling logging

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

372

For an application that has many page hits, you may want to disable logging, as it can slow down the
application. Most applications don’t have this issue, but it’s important to know that the problem might occur.

■ Note logs are stored in underlying APEX-owned tables and are purged at regular intervals. The default is
to keep logs for 14 days before they’re purged, but an instance administrator can increase this value to
180 days. It’s recommended that if you wish to retain this data for longer periods, you set up a nightly job to
copy it to your own schemas. An example of storing a local, permanent, log history is shown in the blog post at
www.talkapex.com/2009/05/apex-logs-storing-log-data.html.

Using the Activity Logs
Each time a page is accessed, a log entry is stored. You can reference it from the APEX_WORKSPACE_
ACTIVITY_LOG view. A good example of how to mine the activity log is to search for errors in an application.
No matter how hard you try, unhandled errors occur. Instead of waiting for users to report these errors
(assuming that they even report errors), you can take a proactive approach. The following query identifies
when an error occurs at the page or region levels:

SELECT *
 FROM apex_workspace_activity_log
 WHERE error_message IS NOT NULL

Once an application has been running for a while, you may notice that some pages are accessed
more often than others and some pages aren’t performing as desired. The following queries identify
these two cases:

-- Find most accessed pages
 SELECT application_id,

application_name,
page_id,
page_name,
SUM (page_id) AS page_hit_count

 FROM apex_workspace_activity_log
GROUP BY application_id,

application_name,
page_id,
page_name

ORDER BY SUM (page_id) DESC

-- Find slowest pages
-- Note: This depends on how you calculate slow
 SELECT application_id,

application_name,
page_id,
page_name,
ROUND (AVG (elapsed_time), 5) AS avg_elapsed_time,
SUM (page_id) AS page_hit_count,
MEDIAN (elapsed_time) AS median_elapsed_time

http://www.talkapex.com/2009/05/apex-logs-storing-log-data.html

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

373

 FROM apex_workspace_activity_log
GROUP BY application_id,

application_name,
page_id,
page_name

ORDER BY 5 DESC

By identifying the most-accessed pages, you can focus your attention on trying to speed them up.
Slow pages may require tuning, but if they’re accessed infrequently, you may not need to spend a lot of
time on them.

Here are some other examples of uses for the activity log:

• Top browsers: If you build your application to support Firefox and IE and then find
that half your users are using Chrome, you may want to invest some time ensuring
that your application supports Chrome.

• The time frame when people are using your application: This gives you an idea of the
best time for maintenance and upgrades. You can also derive the peak usage times.

• Search criteria in interactive reports: If there is a consistent search pattern, perhaps
you need a better report or preset filters.

Login Attempts
The APEX_WORKSPACE_ACCESS_LOG stores all the login attempts to your APEX applications. The access
log can be extremely useful when you’re debugging user-authentication issues.

An example of utilizing the access log is to monitor invalid login attempts. When a user attempts to log
in with invalid credentials, it’s not recommended that you display the exact reason why their login attempt
failed. You don’t want to tell the user the exact reason, because it could reveal valuable information, such as
whether the user exists. It may still be important for your operations team to know why a user wasn’t able
to log in, in case they need to resolve the issue. Because all login attempts are stored in the access log, for a
failed login attempt you can see exactly why a user wasn’t able to log in.

■ Note If you create your own authentication process, you should use the APEX_UTIL.SET_AUTHENTICATION_
RESULT and APEX_UTIL.SET_CUSTOM_AUTH_STATUS procedures to ensure that you populate the access log with
meaningful messages. For more information on these authentication procedures, please read the APEX API
documentation.

APEX Advisor
The APEX Advisor is a tool that executes predefined checks against an application. These validations can
help reduce errors in your application before it’s tested or goes into production.

■ Note Prior to APEX 4, the APEX Advisor was an open-source project developed by Patrick Wolf. during the
development of APEX 4.0, Patrick joined the APEX team at oracle and included the Advisor as a built-in tool. The
open-source version of the APEX Advisor is available at http://essentials.oracleapex.info/.

http://essentials.oracleapex.info/

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

374

To use the Advisor, edit an application and from the main application menu go to Utilities ä
Advisor. Figure 13-14 shows all the checks you can perform. Hovering over each validation displays a brief
description of the validation. You have the option to restrict the pages that the Advisor reviews by defining
a comma-delimited list of pages to search for in the Check Pages region located at the bottom of the page.
Once you select the checks to perform, click the Perform Check button. The results page provides a list of
detailed issues that the Advisor finds plus links to each of the objects.

Figure 13-14. APEX Advisor options

The Advisor is an excellent tool to help you detect issues before your application is deployed to end
users. It’s still important to have development standards and a release process to help prevent issues. You
should be aware that the Advisor might produce false positives in response to some of the business rules in
your organization, so you should analyze each suggestion before fixing it.

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

375

Build Options
Build options let the developer conditionally include or exclude certain features of the application at
runtime. Build options are either enabled or disabled for the entire application and can only be changed in
the Application Builder. This means they aren’t runtime configuration options.

Understanding the Need
Suppose you’re working on a custom authentication scheme and you want to verify that the appropriate
authentication results and custom status messages are populating in the activity log for invalid login attempts.
Each time you attempt a login, you could switch programs and run a query against APEX_WORKSPACE_ACCESS_LOG.
This process might get cumbersome, because you’d have to toggle between two applications. An alternate
solution is to create a report on the Login page to display the most recent login attempts. After each bad login
attempt, you can return to the Login page and see an updated Login Attempts report.

To build this report on page 101, the Login page, create a report with the following query:

 SELECT user_name,
authentication_method,
access_date,
authentication_result,
custom_status_text

 FROM apex_workspace_access_log
 WHERE application_id = :app_id
ORDER BY access_date DESC

The Login page now looks like Figure 13-15. The report allows you to quickly see the authentication
results when testing the login process.

Figure 13-15. Login page with associated Login Attempts report

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

376

Once you’re content that your custom authentication scheme is working, you would normally delete the
extra report region, because it’s only there for debugging purposes. Deleting the region is counterproductive,
however, because you may need it in the future when you modify the authentication scheme.

Creating a Build Option
Instead of removing the region, you should tag it as a Development Only object so it’s available only while
you’re developing your application rather than when you are running in production. Follow these steps to
create a build option to support this requirement:

1. In the Application Builder for the Help Desk application, go to Shared
Components ➤ Build Options (under Security) and click the
Create button.

2. Fill in each section as shown in Figure 13-16 and click the
Create Build Option button.

Figure 13-16. Creating a build option

3. You should now see a Development Only build option, as shown in Figure 13-17.

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

377

Configuring Build Options
Before you continue with this example, it’s important to review some of the options seen in Figure 13-16.
The status values Include and Exclude can be misleading. Build options don’t affect what is included in the
application, just what is executed or displayed at runtime. A better description of the status options would be
enable/disable or on/off.

The Default on Export option sets the default configuration of the build option when the application
is exported and then imported. For this example, because you’re using the build option to handle
development-only features, it makes sense to always exclude the build option and require developers to
explicitly include it.

In some cases there’s no clear default option, so the person installing the application must choose
the appropriate build-option status. You can configure a required choice as part of the application
installation script.

Prompting for Build Option Status
To configure the application to prompt for a build option status during installation, go to Supporting
Objects ➤ Build Options in the Application Builder. Select Development Only (Include) under Prompt for
Build Options so as to prompt for the build option as part of the installation (see Figure 13-18), then click the
Apply Changes button.

Figure 13-17. Development Only build option

Figure 13-18. Build option installation configuration

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

378

When installing the application, the user will have the option to include the build option as shown
in Figure 13-19. Again, include is a misleading term, because the build option will be included but will be
disabled unless you specifically choose to include it during installation of the application.

Figure 13-20. Applying a build option

Figure 13-19. Build option prompt

Applying Build Options
Now that you’ve created and configured the Development Only build option, you need to apply it to the
region in question—the Login Attempts region on page 101:

1. Edit the Login Attempts region.

2. In the Property Editor, scroll down to the Configuration section.

3. Select Development Only in the Build Option list (see Figure 13-20) and click
the Apply Changes button.

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

379

■ Note When you’re applying build options, you can choose the opposite result by selecting the {not …}
option. This helps avoid having to create two build options that are always the reciprocal of each other.

The Access Log region is now run only when the Development Only build option status is set to
Include. You can apply build options to other APEX objects using the same process.

Reporting on Build Option Utilization
Build options can be applied to most APEX objects, including pages, regions, page items, tabs, and so on.
It can become difficult to keep track of which objects use, which build options in applications. The build
option Utilization report enables you to easily view which objects are using a particular build option. This
report can be very helpful when you’re trying to get an overview of the impact that a build option has on the
application.

To view this Utilization report, go to Shared Components ➤ Build Options. Click the Utilization tab and
select the Development Only build option, as shown in Figure 13-21. The link in the description column
brings you to the specific object that is using the build option.

Figure 13-21. Build option Utilization report

Page-Specific Utilities
Page-specific utilities allow developers to perform bulk operations on APEX objects in an application. To
access page-specific utilities, go to Utilities from the Application Edit page. The Page Specific Utilities region,
located at the right, contains all the page-specific utilities available (see Figure 13-22).

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

380

Each of the utilities provides tools associated with the type of object. This book doesn’t cover each
utility, but we encourage you to explore the available features.

APEX and Oracle SQL Developer
Oracle SQL Developer is a free database-development GUI. For more information about SQL Developer, go
to http://www.oracle.com/technetwork/developer-tools/sql-developer.

Integration
APEX is integrated with SQL Developer. In SQL Developer, you can see all the APEX applications whose
parsing schema is the same as your connecting schema (see Figure 13-23).

Figure 13-22. Page-specific utilities

http://www.oracle.com/technetwork/developer-tools/sql-developer

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

381

In SQL Developer, you can view object information and perform basic application-level tasks such as
importing and exporting an application, changing the application alias, and renaming an application.

Refactoring Support
APEX allows for anonymous blocks of PL/SQL. We strongly recommend that such blocks reference compiled
code (packages, functions, and procedures). Storing code in packages helps separate the business logic from
the display layer and may have some performance benefits.

In some cases, you may have written large blocks of code directly in the application. Eventually, you
should move these large blocks of code into compiled PL/SQL code. SQL Developer provides a tool that
automatically generates a PL/SQL package from the anonymous blocks of PL/SQL in APEX. You can then
replace your large blocks of code with references to this package. To generate the package, right-click the
application in SQL Developer and select Refactor (in Bulk), as shown in Figure 13-24.

Figure 13-24. Refactoring code

Figure 13-23. APEX in SQL Developer

ChAPTEr 13 ■ EXTEndEd dEvEloPEr Tools

382

SQL Developer opens a new worksheet with the necessary code to compile. The new worksheet also
provides notes on what sections of your APEX applications to change and the code to replace them
with. Similar to the APEX Advisor, these are recommendations; you should follow your organization’s
development standards, and so on.

Summary
Many tools in APEX make your life as a developer easier. Take some time to get to know the tools and
utilities presented here, and you can undoubtedly speed up your ability to get things done. And although
any PL/SQL GUI can help you edit and manage database objects, it should be clear by now that Oracle’s
SQL Developer has special hooks to make managing, developing, and debugging with APEX far more
straightforward.

383

Chapter 14

Managing Workspaces

Once you start developing APEX applications and working in a team environment, you will need to spend
some time managing workspaces. This chapter will cover the various tools and resources available with
which to manage a workspace.

■ Note Administering a workspace covers many different areas. This chapter doesn’t discuss all areas in
detail; some have been mentioned in other chapters, and others aren’t included because of space constraints.
This chapter assumes that the user logging in is a workspace administrator.

Learning About Your Environment
When you log in to APEX as a workspace administrator and navigate to the Administration home page using
the Administration drop-down menu in the upper right-hand corner of the page, you see icons for each
of the major sections (see Figure 14-1). This chapter will cover each of these sections and their associated
subsections.

Figure 14-1. Administration home page

ChApTer 14 ■ MAnAging WorkspACes

384

Viewing Instance Information
On the right-hand side of the Administration home page, in the Tasks region, the second link is About
Application Express. Clicking this link brings you to a page that shows information about your current APEX
instance (see Figure 14-2).

Figure 14-2. About Application Express page

The information on this page can be very useful when you’re developing and debugging APEX
applications. In fact, the About page is an excellent location from which to quickly get an overview of your
particular APEX instance. Because APEX is stored in the database, all the values in the figure can also be
obtained from a query. For example, you can find the database version from the following query:

SELECT *
FROM v$version

The list of CGI variables in Figure 14-2 is only available to workspace administrators. If developers
need to see a complete list of CGI variables and their values, they can create a PL/SQL region and use
OWA_UTIL.PRINT_CGI_ENV as the region source.

ChApTer 14 ■ MAnAging WorkspACes

385

■ Note You can only obtain Cgi variables from a web interface because they’re web-based variables. if
developers try to query them in sQL*plus or sQL Developer, they won’t get any results. The following article
contains more information on Cgi variables: http://en.wikipedia.org/wiki/Common_Gateway_Interface.

Checking the APEX Version
The About Application Express page displays the current version of APEX. You can also obtain the version
information using the following query:

SELECT *
FROM apex_release

Obtaining the APEX version from a query can be important for DBAs when upgrading an application.
Also, developers sometimes write code that is dependent on the current version of APEX.

Managing the Service
Click the Manage Service icon to change preferences and other settings affecting the operation of your APEX
service. You can find the Manage Service icon on the Administration home page shown in Figure 14-1.

Figure 14-3 shows the main Manage Service page.

Figure 14-3. Manage Service page

http://en.wikipedia.org/wiki/Common_Gateway_Interface

ChApTer 14 ■ MAnAging WorkspACes

386

Workspace Preferences
You can enable and disable the different modules available to APEX developers. To configure each of the
modules, click the Set Workspace Preferences menu item (see Figure 14-3). The Set Preferences page is
shown in Figure 14-4.

Figure 14-4. Set Preferences page

From the Set Preferences page, you can enable or disable the following APEX modules:

• Application Builder

• SQL Workshop

• Team Development

If you disable any of these modules, they’re disabled for all users regardless of their privileges. In
production instances, you may want to restrict access to the SQL Workshop as part of your corporate policy,
because the SQL Workshop has access to all the objects in the schema.

The Account Login Control section manages APEX workspace users. Settings in that section don’t
affect your APEX applications unless you’re using the default APEX authentication scheme that references
workspace users.

ChApTer 14 ■ MAnAging WorkspACes

387

Messages
Messages allow workspace administrators to create messages that will be visible to APEX developers.
Messages are displayed in key areas throughout the APEX development environment. These messages aren’t
displayed in your APEX applications.

To create a message, click the Edit Message menu item (see Figure 14-3). Enter a message and click
the Apply Changes button, as shown in Figure 14-5. The message appears in the announcement section, as
shown in Figure 14-6.

Figure 14-5. Editing a workspace announcement

Figure 14-6. A workspace announcement

ChApTer 14 ■ MAnAging WorkspACes

388

Managing Meta Data
On the right side of the Manage Service page is a region called Manage Meta Data (see Figure 14-7). The
following subsections will cover what you can do using the menu choices in this region.

Figure 14-7. Manage Meta Data menu

Developer Activity and Click Count Logs
The Developer Activity and Click Count Logs menu option allows the purge of two types of logs. One logs
changes made by developers in the workspace. The other tracks user clicks on links to pages outside your
APEX application.

Developer Activity Logs
The Application Builder logs all changes made by developers. The logs are referenced in various locations
throughout the Application Builder and in the Administration section. You can view the logs from the
Monitor Activity section, which you can access by clicking the Monitor Activity icon shown in Figure 14-1.
You can also obtain the developer activity logs from the following query:

SELECT *
FROM apex_developer_activity_log

ChApTer 14 ■ MAnAging WorkspACes

389

Like the logs mentioned in the previous chapter, the developer activity logs retain up to one month of
data. You can purge developer activity logs by clicking the Purge Developer Log button shown in Figure 14-8.

Figure 14-9. Purge Click Log button

Figure 14-8. Purge Developer Log button

Click Count Logs
When creating a list (Application Builder ➤ Shared Components ➤ Lists), you can choose to track clicks on
external links. These clicks are logged in the APEX_WORKSPACE_CLICKS log. You can also view the click count
log in the Monitor Activity section (see the icon for Monitor Activity in Figure 14-1).

Similar to the developer activity logs, you can purge the click logs by selecting Manage Click Count Log
and clicking the Purge Click Log button shown in Figure 14-9.

Session State
Choosing Session State from the menu in Figure 14-5 brings you to a page that lets you manage session state
and preferences. Preferences are slightly different than session state, as they’re linked to the user and not the
current session. This means that changes to a preference affect all current and future sessions for a user.

Manage Session State
You can view all the session values, clear these values, and end sessions from the various reports available
in the Manage Session State region. A session is automatically created each time a user logs in to APEX.
Because the APEX Builder is an APEX application, sessions are created for both developers and end users.

Clearing session state or terminating a session may be useful in development to simulate different
situations. If you’re doing this in a production environment with live users, you should be extremely cautious.

ChApTer 14 ■ MAnAging WorkspACes

390

Manage Preferences
The Manage Preferences region contains links to view and manage user preferences. Preferences are used
to permanently store values for each user. Because they’re linked to a user, they’re session independent.
One of the most common uses for user preferences is to store the sort order for standard reports that APEX
automatically manages.

Similar to session state, you shouldn’t purge preferences in a production environment unless you’re
certain about what you’re doing.

Application Cache
The Application Cache section provides the tools to purge page and region caches based on different
criteria. In APEX you can cache pages and regions either for all users or by each individual user. Caching can
help improve performance, because APEX doesn’t need to regenerate the HTML code for a given region.

Websheet Database Objects
The Websheet Database Objects section allows you to create or delete the tables required for websheets
and validate their status. Unlike an APEX application, websheet data is stored in tables that reside in each
schema instead of in tables owned by the APEX_050000 schema. The tables start with the prefix APEX$_WS,
and usually there are about ten of them.

When you first create a workspace, the websheet objects aren’t created. To create them, go to the
Websheet Database Objects section and click the Create Websheet Database Objects link shown in
Figure 14-10. Follow the wizard to create the websheet objects. After you’ve created the websheet objects,
you can create a websheet application.

Figure 14-10. Create Websheet Database Objects link

Figure 14-11. Websheet Database Objects page

Once the objects are created, the Websheet Database Objects page looks like that in Figure 14-11.
From this screen, you can remove the database objects that relate to websheets or ensure that these objects
are valid.

ChApTer 14 ■ MAnAging WorkspACes

391

Application Build Status
From the Application Build Status section, you can quickly manage both the Application Status and the
Build Status for all the applications in the workspace. The Application Status controls the availability of the
application. To get a full explanation of each application status, reference the APEX documentation.

The Build Status determines whether an application can be modified by developers or run only. In
production environments, you may want to set the Build Status to Run Application Only to prevent any changes.

■ Note The Application and Build statuses can also be set from the Application properties page for
each application.

File Utilization
The File Utilization page provides an overview of all the types of files and their total size in the workspace, as
shown in Figure 14-12. There are various locations where files can be stored as part of an APEX application.
Over time, these files can take up unnecessary space.

Figure 14-12. File-utilization information

The export repository tends to consume the most space out of all the files listed on the File Utilization
page. When you import an application into your workspace, the original file is stored in the export
repository. The name export repository can be misleading, because the repository contains the original
application files that are imported into the workspace. Once an application has been successfully imported
and installed, you don’t need to retain the file in the repository, so it can be removed.

The following steps explain how to clean up the export repository:

1. From the Administration home page, click the Manage Export Repository link
located in the Tasks region at the right.

2. Select the files you no longer need and click the Delete Checked button, as
shown in Figure 14-13.

ChApTer 14 ■ MAnAging WorkspACes

392

Interactive Report Settings
The Interactive Reports Settings page allows workspace administrators to manage saved reports and report
subscriptions. Only workspace administrators can delete saved reports and report subscriptions. The only
way to modify a report configuration is to log in as the user.

Saved Reports
The Saved Reports section allows you to delete certain saved interactive reports. Interactive reports have four
different types of saved reports (see Figure 14-14). Primary Default is the default report setting as created by
the developer and is accessible to all users. Alternative Default reports are also saved by the developer and are
accessible to all users. This gives the developer the ability to pre-create several versions of the same report.

Figure 14-13. Delete Checked button

Figure 14-14. Manage Saved Interactive Reports page

Private interactive reports are custom interactive reports that are only visible to the users who created
them. Public interactive reports are reports saved by a privileged end user that have been created as public
so any other user can see them.

On the Saved Reports page, you can delete any report except the Primary Default report by selecting the
report(s) and clicking the Delete Checked button. Primary default reports can’t be deleted from this screen.
They can only be altered by directly editing the report region.

ChApTer 14 ■ MAnAging WorkspACes

393

Subscriptions
Similar to the Saved Reports section, you can delete interactive report subscriptions from the Subscriptions
section. Subscriptions allow users to receive emailed reports on a schedule that they define. Subscriptions
were a new feature in APEX 4.0 and must be explicitly enabled by developers.

On the Manage Subscriptions page, workspace administrators can either delete specific subscriptions
or all subscriptions, as shown in Figure 14-15. Just like with saved reports, you can’t modify any of the
subscription attributes.

Figure 14-16. Manage Users and Groups page

Figure 14-15. Manage Subscriptions page

Managing Users and Groups
This section will cover most of the features available when you click the Manage Users and Groups icon
located on the Administration home page shown in Figure 14-1. All references assume that you start on the
Manage Users and Groups page shown in Figure 14-16.

The main page contains a list of all the end users, developers, and workspace administrators. You can
modify a user by clicking their name. End users don’t have access to the development environment and have
access to applications only if the authentication scheme is the default Application Express.

Creating One User
To create a single user, click the Create User button shown in Figure 14-16. If you’re only creating developers,
you don’t need to worry about entering some of the non-required fields, such as first and last name, because
you usually know the user based on the username. You can also grant access to specific modules. For
example, if you create an account for a project manager, you may only want to give them access to the Team
Development module, as shown in Figure 14-17.

ChApTer 14 ■ MAnAging WorkspACes

394

Creating Multiple Users
Creating multiple users one at a time using the Create User page can become slow and frustrating. APEX
provides an interface to create multiple users. Start by clicking the Create Multiple Users button, as shown in
Figure 14-16.

On the Create Multiple Users page, you need to provide an email address for each user. The email
addresses can be delimited by commas, semicolons, or new lines. APEX generates the usernames from the
email addresses that you enter. For example, the email address doug@mycompany.com yields as a username
either doug@mycompany.com or just plain doug. You can specify whether you wish each email address to
translate directly into a username, or whether you want the usernames to exclude the @domain suffixes.
Figure 14-18 shows the radio button set for the latter option.

Figure 14-17. Account privileges

ChApTer 14 ■ MAnAging WorkspACes

395

If your usernames don’t correspond to your corporate email addresses, you can enter email addresses
with invalid domains and select the option to omit the suffixes. For example, enter the email address
jonathan@example.com when you just want a user named jonathan. Then select the option to exclude the @
domain portion of the email address.

Figure 14-18. Create Multiple Users page

ChApTer 14 ■ MAnAging WorkspACes

396

The password that you enter is the same for all the users. When they log in to the workspace, they will be
required to change it.

After you enter all the information on the Create Multiple Users page, click the Next button to go to the
confirmation page shown in Figure 14-19. If everything is correct, click the Create Valid Users button.

Figure 14-19. Create Multiple Users confirmation

Organizing Users into Groups
You can associate an APEX user with multiple groups. These groups can be used in authorization schemes to
grant or deny access to various parts of an application. Because groups are linked with APEX users, you can
only use groups when your authentication scheme is set to the default Application Express scheme.

It’s important to note that groups are associated with a single workspace. If you have a traditional setup
with development, test, and production environments, you will need to create the same groups in each of
the workspaces.

Creating a Group
To create a user group, click the Manage User Groups link in the Tasks region (shown in Figure 14-20), and
then click the Create User Group button. Enter a unique group name and description, as shown in Figure 14-24.
Groups can be nested so that they contain other groups. When a group contains other groups, they become
a parent group and therefore “inherit” membership of the other groups.

ChApTer 14 ■ MAnAging WorkspACes

397

Figure 14-20. Manage User Groups option from the Tasks menu

ChApTer 14 ■ MAnAging WorkspACes

398

Figure 14-22. Assigning users to a group

Assigning Users to a Group
Assigning users to a group isn’t very intuitive. Clicking Group Assignments in the Manage User Groups
region only gives you a report of all the users and their groups. To assign a user to a group, you need to edit
the user (Users ➤ Edit User) and scroll down to the User Groups region shown in Figure 14-22.

Figure 14-21. Creating a user group

ChApTer 14 ■ MAnAging WorkspACes

399

Viewing Usage Reports and Dashboards
The Monitor Activity and Dashboard sections from Figure 14-1 provide many detailed and summary reports
about your APEX workspace. The reports contain information about both developer activity and end-user
activity. You’re encouraged to explore each of these sections to see all the available reports.

Summary
APEX provides many tools to help you manage your workspace, plus reports that provide statistics about
your workspace. Some tools can affect end users and should be used cautiously. However, don’t let the need
for caution deter you from using tools that can make your job easier. Learn the tools well. Be confident in
your knowledge. Take a moment to think before you act. These are the keys to success.

401

Chapter 15

Team Development

Team Development is an excellent tool for managing APEX software development. It is embedded within the
APEX development environment, allowing you to manage your APEX projects with tools that you and your
team use every day, like interactive reports. This eliminates the need for an external project-management
tool. Team Development’s simple, extensible, and flexible architecture is ideal for managing projects of
any size. Its simplicity lends itself to small projects where you want to minimize your project-management
overhead. Its extensibility scales well, allowing you to manage large projects by using its rich set of attributes
to construct a sophisticated work breakdown structure (WBS). Its flexibility lets you adapt it to your
organization’s software-development culture.

APEX and Team Development are both well suited to working with agile software-development
methodologies. APEX’s Rapid Application Development (RAD) architecture allows the team to rapidly
deliver regularly scheduled releases to business testers and end users. Team Development’s feedback
mechanism efficiently channels end-user issues back to the development team so that appropriate changes
can be included in the following releases and easily documented. Team Development makes APEX, which is
already an efficient development platform, even more efficient.

The primary purpose of this chapter is to highlight how Team Development works. A secondary
purpose is to illustrate how agile software-development practices can be used with Team Development to
deliver quality software while meeting your cost and schedule constraints. By the end of the chapter, you
should have a good understanding of what is in Team Development and some ideas about how to integrate it
into your team’s development culture.

Team Development was added to APEX in version 4.0. The APEX team has used a version of Team
Development while developing APEX, even before it was released as an APEX module. This design
philosophy of using the tool to build the tool is a key reason why Team Development and APEX are practical
and easy-to-use tools.

Team Development Overview
Team Development consists of milestones, features, to-dos, bugs, and feedback. These modules are
complemented by a small number of utilities called Team Actions that are used to manage the Team
Development environment. The entity-relationship diagram (ERD) illustrates the relationships between the
main entities (see Figure 15-1).

Chapter 15 ■ team Development

402

The Team Development entities are contained within a single workspace. When you’re managing
several applications simultaneously within a workspace, you and your teams can easily filter Team
Development’s data using the tool’s interactive reports. That way, each stakeholder sees only the work that is
of immediate interest for the tasks at hand.

Milestones are the high-level scheduling components of Team Development. They can be used to track
major and minor releases of an application. Don’t confuse milestones with the due dates that are associated
with features and to-dos. For example, a milestone could be the scheduled date for a product release, but a
feature that is included in the release might be due well in advance of the milestone date. If you use an agile
software-development strategy, milestones are well suited to define the time boxes or sprints.

Features describe the big picture. At a high level, they describe and track progress for the major pieces
of functionality that your client has requested. Attributes like owner, start date, due date, summary
description, priority, status, and so on are easily tracked. In addition, you can optionally track the status
of individual components, such as the user interface, testing, documentation, globalization, security, and
accessibility. The self-join that is associated with features allows you to further subdivide a feature into child
features as development progresses and the design becomes more refined. The high-level nature of features
makes them an ideal source for management status reports.

To-dos are used to assign detailed work to individuals or teams. Due dates, time estimates, and so
on are tracked. Like features, to-dos have a self-join capability that allows you to subdivide them as more
information becomes known during the development process. This is handy when a single to-do requires
effort from more than one team member.

When a defect is found, it’s reported as a bug. Bugs have their own lifecycle that includes a rich set of
attributes, such as description, resolution, release, assignee, context, and date information. When you find
a bug that turns out to be a design flaw, Team Development allows you to link the bug to multiple features,

Figure 15-1. A simplified entity relationship diagram of Team Development

Chapter 15 ■ team Development

403

milestones, and to-dos, because the bug fix might require an extended timeframe that spans a number of
product releases.

Feedback is one of the primary sweet spots of Team Development. The feedback mechanism can
be installed in an application in a matter of minutes and gives the entire team an efficient and elegant
communication channel for comments, suggestions, issues, defect reports, and responses. Once installed
in an application, the feedback mechanism is promoted with the application from the development
environment to the test environment and on to the production environment. Feedback data and the related
responses are copied back and forth between the various environments via the APEX import/export facility.
This keeps the developers, testers, and end users in close touch with each other. Another key feature of the
feedback mechanism is that it automatically records all the critical “under the hood” data that end users
know nothing about. The application context, environment variables, and, most important, session state are
all captured. This data is invaluable when you’re diagnosing an issue.

At first glance, the Team Development entities seem to contain a large number of attributes. So, do
you have to enter all these attributes in order to use Team Development? No. To get the most out of Team
Development, you and your team must plan how you’re going to use it, with a view to effectively managing
the software-development process with minimum effort. You can pick a small subset of Team Development’s
attributes that fit your software-development culture and key into only that subset of the data. Interactive
reports can easily be customized to display only the data that is important to you.

Team Development Interface
The Team Development interface is consistent with the overall APEX development interface. It makes
extensive use of dashboards so as to quickly give you an idea of how your teams are progressing. Drilling
into the details to view and update the data is fairly straightforward and intuitive. APEX developers will have
no trouble navigating within the tool or customizing interactive reports. Managers, testers, and business
analysts will also be able to use Team Development after a short training session.

APEX Home Page
The APEX home page (see Figure 15-2) clearly indicates how important Team Development is to the APEX
team. The APEX team could have easily put Team Development under a minor link somewhere on the home
page. Instead, Team Development has been promoted into a marquee module that is on an equal footing
with the Application Builder and the SQL Workshop.

Chapter 15 ■ team Development

404

The APEX home page highlights the easy and convenient navigation. The News and Messages region,
which will house workspace-level messages as well as news directly from Team Development, contains two
links (Create News Items and Edit News Items) that enable quick changes to the region without having to
drill down into subpages. In the Dashboard region to the right, you’ll see that one of the metrics is Features.
The region to the right-hand side often contains either further information or a list of tasks available to the
developer. Look for similar links throughout the Team Development interface; they’re very handy.

Team Development Home Page
The Team Development home page (see Figure 15-3) serves two purposes. First, it contains links to all the
detailed entity regions; and second, it shows you a dashboard for each entity. You also see links to Utilities,
which will be discussed near the end of this chapter in the section “Team Development Utilities.”

Figure 15-2. APEX home page

Chapter 15 ■ team Development

405

The main Team Development dashboard page provides a high-level overview of activity in the module.
From here, users can either add new items or navigate directly to the individual detailed dashboard for each
area of Team Development.

The detailed dashboards can be filtered by a combination of assignee, release, and application,
depending on the area. These filters make it easy for users to customize the page to their needs. For example,
managers can ask, “How are we doing?” while a developer can ask, “What do I need to do for this release?”
This high-level filter region is found at the top of dashboard pages associated with each Team Development
entity. The filter fields are tailored to each entity. The dashboard regions link to their underlying entities.
There are Add and Edit icons in each header, as well as a circle graph for each item type; when you click any
of these items, you’re taken the appropriate report, Create page, or Edit page for the related item.

Common Design Elements
When you drill into the individual Team Development entities, you will find several common design
elements that help you navigate quickly and intuitively between entities. Figure 15-4 highlights these design
elements. At the upper left is a set of tabs tailored to each entity. Some of the tabs—Dashboard, Report, and
Calendar—are common to all entities. Others are unique to a specific entity.

Figure 15-3. Team Development home page

Chapter 15 ■ team Development

406

All of the dashboard pages contain a Filter region that is tailored to the entity. The filter’s select list
contains entries for only the entities that are tracked by Team Development. For example, if there is an
application that doesn’t have any features associated with it, that application doesn’t appear in the select list.

Many of the individual dashboard regions contain links that take you to the entity’s Report page and
automatically set the filters on the Details page’s interactive report so you see only the entity records that
are related to the dashboard item you selected. This navigation strategy, once you get used to it, is extremely
convenient.

Drilldown Functionality
The Calendar tabs (see Figure 15-5) display links to individual entity records based on the entity record’s due
date. Clicking the entry’s link takes you directly to the Edit page for the selected entity record. Clicking the
Cancel button on the Edit page returns you to the calendar.

Figure 15-4. GUI design elements that are common to all entities

Chapter 15 ■ team Development

407

Some of the entity tabs display their data graphically (see Figure 15-6). Clicking a graph automatically
takes you to the entity’s Details page and sets the interactive report to show only the data selected on the graph.

Figure 15-5. Calendar with links to an Edit page

Chapter 15 ■ team Development

408

Tagging
A powerful organizational attribute called tags is associated with all entities. A tag is a free-form text input
that enables you to group records by a keyword. This is handy, because some record groupings don’t fit
into the neat and tidy relational data model. For example, you might want to be able to find all features that
contain a shuttle item across all applications. By adding the tag “shuttle” to these features, you can use the
interactive report Search field to find all records that contain the tag of “shuttle.” All dashboard pages contain
a region that displays the tag strings defined in their respective entity. This lets you quickly find and correct
typos so the free-form tags can be kept accurate.

GettING paSt the INItIaL DISCOMFOrt

at first, team Development’s organization, layout, and navigation might appear a bit strange and non-
intuitive. I certainly struggled with it at first. my initial perception was probably the result of my previous
experience with project-management tools that use pages with a work-breakdown structure on the left
and a Gantt chart on the right.

the initial discomfort with team Development was similar to my first experiences with apeX. like many
experienced developers, I came from development environments in which screen widgets are listed on
the left and dragged onto a screen, and in which the X-Y coordinates are set together with a widget’s
height and width, all at pixel-level precision.

Figure 15-6. Graphic data summary

Chapter 15 ■ team Development

409

Figure 15-7. Milestones tab

When I first used apeX, it took a while to get used to how apeX built pages. after a few tries, I learned
to love the product. I believe the same will be true for you with team Development. after a bit of
experience, you’ll find that the interactive reports are, in fact, a practical alternative to Gantt charts,
especially in an agile software-development environment in which the time boxes are short and the lists
in the interactive reports are correspondingly small.

Milestones
Milestones are used to define and track event dates for both scheduled and one-time happenings. On
the surface, this appears to be a simple concept; however, it can be a confusing area, because milestone
functionality overlaps with releases and can be confused with the due dates associated with features, to-dos,
and bugs. Fortunately, the confusion can be mitigated with a bit of planning and organization.

One strategy you can use to organize milestones and releases is to create one of each for the same
release event. The milestone contains the metadata associated with the release: the date, a type, the owner,
a description, and tags. The release is defined as a configurable LOV that is shared by all Team Development
entities, but it contains no descriptive metadata. Also, releases are one of the handy high-level filters
associated with features, to-dos, and bugs. The need for both metadata and the high-level filters is the
reason a milestone and a release must be used to describe the same event. Happily, the overhead in doing
this is low.

Another suggestion for workspaces that contain multiple applications is to prefix features, milestones,
releases, to-dos, and feedback with the name or code of their associated application. In many cases, this isn’t
strictly necessary, but it can make some of the dashboards more readable, because they often contain only
an entity’s name without any supporting data.

Milestones, of course, are used to define and track other events in the software-development lifecycle.
Important meetings, tool software upgrades, and requirement deliveries are just a few examples.

The Milestones interface contains a number of tabs. The Dashboard and Calendar tabs are common to
all entities and were discussed earlier.

Milestones Report Tab
The Report tab in Figure 15-7 displays an interactive report that contains a list of milestones. The high-level
filters let you select all or only future events as well as individual releases. The Edit link in the interactive
report takes you to the milestone’s Edit page, which contains intuitive items that are documented under
their labels.

Chapter 15 ■ team Development

410

By Owner Tab
The By Owner tab (see Figure 15-8) is a dashboard that summarizes the relationships between a single
milestone and the other Team Development entities, broken down by owner. Knowing the number and
status of the related features, to-dos, and bugs is a good management tool that is useful for controlling a
sprint or time box that leads up to a release.

Features by Milestone Tab
The Features by Milestone tab (See Figure 15-9) contains an interactive report that, in detail, illustrates
the relationship between milestones and the features associated with the milestone. This is mainly a
management report.

Figure 15-8. Milestones By Owner tab

Chapter 15 ■ team Development

411

Figure 15-9. Features by Milestone tab

Features
Features describe an application from a high-level perspective. They’re used at the beginning of a
development project to define the scope well enough that budgetary estimates can be made for cost,
schedule, and resource requirements. Once the project is approved and work begins, child features are added
to describe, control, and track progress in more detail. Features are the heart of management status reports.

The Features Details page contains a number of tabs. The Dashboard, Calendar, Focus Areas, and
Owners tabs aren’t discussed here because they or their equivalents are common to all entities and their
characteristics were mentioned earlier. The Report, History, and Progress Log tabs are highlighted next.

Features Report Tab
The Report tab (see Figure 15-10) contains an interactive report that, in turn, links to the Edit page for
individual feature records. Because the data grid is an interactive report, each user can tailor it to their
needs. You can choose your columns from approximately 50 attributes, sort to your taste, and even group
related records together. Interactive reports are discussed in detail in Chapter 6.

Figure 15-10. Features interactive report

http://dx.doi.org/10.1007/978-1-4842-0466-5_6

Chapter 15 ■ team Development

412

The Copy link is useful when you’re entering a number of related features. For example, if you’re
entering 10 or 20 features that belong to a single application, you might expect many of the data attributes to
be repeated on every record. The Copy link creates a new feature as an exact copy of the existing one in the
interactive report. Only the name is changed. Once the new feature is created, you can then quickly edit it
and change the attributes that are unique to that record.

The Edit link takes you to the Features Edit page (see Figure 15-11). You can easily explore the individual
attributes on your own; their definitions are generally self-evident and are documented by clicking an
attribute’s label. However, there are areas on the Features Edit page that deserve more explanation:

• User Interface, Testing, Documentation, Globalization, Security, and Accessibility
regions: These regions are used to track sub-lifecycles that are associated with a
feature. For example, if a separate team is responsible for documentation, their
progress can be tracked separately from the main feature (see Figure 15-12). If the
documentation effort isn’t being tracked, then the Documentation region can be
excluded from the Features Edit page by turning it off in the Team Development
settings area. See the subsection later in this chapter on “Team Development
Settings.”

•	 Configurable lists of values (LOVs): Some LOVs, such as Status, are controlled by the
APEX team. Others, such as Owner, are controlled by the development team. Instead
of maintaining the developer-configurable LOVs in a separate maintenance area,
these lists are maintained in place. For example, to add a new owner, you enter the
appropriate name in the New Owner item and click the Apply Changes button, and that
name is added to the LOV. Unfortunately, currently there is no easy and safe way to edit
these configurable LOVs; we hope this ability will be added in a future APEX release.

Figure 15-11. Features Edit page

Chapter 15 ■ team Development

413

Figure 15-12. Features Documentation region

History Tab
The History tab (see Figure 15-13) presents a detailed audit trail of all changes made to all features. The tab
presents an interactive report that contains information on the feature, column name, old value, new value,
user who made the change, and when the change was made. You can view the report on the History tab for
quality-assurance purposes or as a source of evidence if contractual disputes arise.

Progress Log Tab
The Progress Log tab in Figure 15-14 is, in effect, a diary. Stakeholders can, on the Features Edit page, enter
free-form text into the progress log at any time. The progress log acts as a communication channel for the
development team and can be used to record new ideas, reminders, a flash of brilliance, questions, and
anything else that needs to be remembered.

Figure 15-13. Features History tab

Chapter 15 ■ team Development

414

To-Do Items
To-do items are the workhorses of Team Development. Team Development uses the term to-do as a noun.
A to-do is a specific task that is assigned to an individual or team along with a due date. In simple terms, a
to-do describes the what, who, and when of the task at hand.

To-dos can be subdivided into many child and grandchild tasks. This process of decomposition can
be done to the point of diminishing returns. A rule of thumb is that the number of subtask levels should be
appropriate for effectively controlling the tasks at hand. What is appropriate is, of course, a function of your
team’s culture. Also, in an agile software-development shop, the subtask levels tend to remain shallow due to
the daily face-to-face communication between team members.

There are four tabs in the To-Dos module: Dashboard, To-Dos, Calendar, and Progress Log. You’ll find
working with these tabs to be easy and intuitive.

A handy navigation feature links the development environment directly to the To-Dos module. When a
to-do has its context set to both an application and a specific page number within that application, a count
of to-dos appears in the Team Development drop-down menu (see Figure 15-15). In the drop-down you can
see counts of to-dos, bugs, feedback, and features. When you click the to-do count, the link takes you directly
to the To-Dos Report page that has the interactive report filters set to list only the open to-dos associated
with the Development page (see Figure 15-16). The developer can then quickly select one of the to-dos,
see what needs to be done, and return to the Development page to complete the to-do task. This efficient
navigation strategy also applies to bugs and feedback.

Figure 15-15. Development page linked directly to the To-Dos module

Figure 15-14. Features Progress Log tab

Chapter 15 ■ team Development

415

Figure 15-16. To-Dos page filtered by an application’s development count link

Bugs
In the software-development world, bugs are a fact of life. We all hope that bugs are found and fixed in the
unit- and system-testing cycles before a product is released to end users. Happily, this is generally true, with
the caveat that a small number of bugs slip through into the production environment. Team Development’s
Bugs module is a practical environment that is used to track easy and hard bugs in the development, test,
and production environments.

Easy bugs are usually caused by a coding error or a programmer’s misunderstanding of a requirement.
The symptoms are obvious, the root cause is simple to find, and the fix is almost trivial; for example,
changing a plus sign to a minus sign or reorganizing an IF statement in the code. Easy bugs are usually
found early in the product’s development cycle and are, in general, caught by the programmers or testers.
However, easy bugs must be recorded and reported so that improvements can be made to the coding
process; a large number of easy bugs can turn out to be surprisingly expensive.

Hard bugs are, well, hard. They can be caused by design flaws anywhere in the system, subtle
interactions between software systems, subtle interactions between software and hardware, and awkward
interactions between users and the GUI. Hard bugs can have their own lifecycle, and the fix might be spread
over several product releases. Team Development’s Bugs and To-Dos modules can be used together to track
a hard bug’s resolution, even when it spans several product releases.

The Bugs module highlights how you can take advantage of Team Development’s simplicity,
extensibility, and flexibility. Simplicity makes tracking easy bugs almost trivial. A bug is found, and
everything about the bug is recorded in Team Development’s Bugs module, including the what, who, and
when data. Easy bugs can stand on their own, or you can associate them with a to-do depending on how you
organize your Team Development environment.

Extensibility and flexibility come into play when you deal with hard bugs that may take an extended
amount of time to fix and may possibly require effort from several developers or teams. Team Development
can handle this situation by linking a hard bug to a to-do (see Figure 15-17). The linked to-do is then set up
as the parent of several child to-dos that are used to track the tasks required for the fix.

Chapter 15 ■ team Development

416

Feedback
Team Development’s Feedback module is an APEX “sweet spot.” Even if your team chooses not to use Team
Development to manage its software-development efforts, you should at least consider using the Feedback
module. The Feedback module provides a cost-effective channel through which end users, test team
members, and even the developers themselves can send suggestions, comments, and bug reports directly
to business analysts and developers. Responses to the feedback can optionally be communicated back to
the persons who triggered the feedback. And feedback can be taken from all three typical environments:
production, test, and development.

■ Note the Feedback module is so cost effective because the cost-to-benefit ratio almost approaches zero.
It takes only a few minutes to set up feedback in an apeX application, and it gives you a huge benefit.

Configuring Feedback
You begin configuring the feedback mechanism by creating a new page in your application. The Create Page
wizard contains a Feedback Page option (see Figure 15-18). Select this option, and click the Next button.

Figure 15-17. Linking a hard bug to a parent to-do

Chapter 15 ■ team Development

417

Figure 15-18. Feedback Page option in the Create Page wizard

The next page in the wizard sets up the details for the Feedback page (see Figure 15-19). You enter the
page number and page name and then select a page template, form region template, and label template. You
can also declaratively create a Feedback link on the application’s global navigation bar. The defaults, in most
cases, work well.

Chapter 15 ■ team Development

418

However, one attribute requires a bit more explanation because its benefit isn’t immediately obvious.
The Extra Attributes field allows you to add up to eight custom fields to your Feedback page. These are
sometimes called flex fields. These fields can be used to prompt end users for additional information when
they submit feedback. For example, a public APEX website requires no login; therefore, the user’s identity
can’t be captured automatically. The extra attributes can be used to capture the user’s name and email so
the feedback response can be sent to them.

Figure 15-19. Feedback page set up in the Create Page wizard

Chapter 15 ■ team Development

419

Figure 15-21. Feedback page prior to some polishing

Click the Create button and then run the application. You now see the Feedback link in the navigation
bar (see Figure 15-20). If you can’t use the default Feedback link in your design, you can move it anywhere
you like in your application. The link uses the standard APEX f?p syntax.

Figure 15-20. Application with the Feedback link

Polishing the Feedback Page
When you click the Feedback link, the Feedback popup page is displayed (see Figure 15-21). As you can see,
the page needs a bit more work to polish it. Because this is a standard APEX page, you can complete the
polishing in one or two minutes by clicking the Edit Page button to navigate to the Page Designer.

Chapter 15 ■ team Development

420

Figure 15-22. Extra attributes on the Feedback page

In this example, let’s change Attribute1, Attribute2, and Attribute3 to Name, Department, and Email.
APEX automatically added these items to the Feedback page (see Figure 15-22) when you selected 3 in the
Extra Attributes field in the Create Page wizard.

Configuring the extra attributes is a two-step process. First, rename the items so they describe the data,
change the item types from Textarea to an item type that is appropriate for the data, and rename the label to
something meaningful to the end users (see Figure 15-23).

Chapter 15 ■ team Development

421

Second, in the Page tab of the Tree Pane (see Figure 15-24), you must edit the Submit Feedback process
so that the API calling parameters match the renamed and relabeled extra attributes (see Figure 15-25).

Figure 15-23. Reconfiguring extra attributes

Figure 15-24. Feedback Page’s Processing region

Chapter 15 ■ team Development

422

After you complete the changes and rerun the application, you will see the finished Feedback page (see
Figure 15-26). Enter some feedback into the page and click the Submit Feedback button. Then, go on to the
next section and learn how to review the feedback that you and others have entered.

Figure 15-25. Feedback Page Processing changes in the Submit Feedback process source

Figure 15-26. Finished Feedback page with three extra attributes

Chapter 15 ■ team Development

423

Viewing Feedback
You can review all feedback for an application from the Team Development page. Navigate to that page and
then click the Feedback tab. You should see results similar to those in Figure 15-27.

Figure 15-27. Feedback entry

When you drill into an individual feedback record, you will find a wealth of data and information that
can make your life as a developer much easier. The Feedback region contains a read-only description of
each feedback record. The Disposition region is where you track feedback status, tags, developer comments,
and public response. In addition, there are three buttons: Log as Bug, Log as To Do, and Log as Feature.
These buttons create a new Team Development entity and copy data from the feedback record to the new
entity, which saves time and ensures accuracy. The Follow Up region is like a diary; it’s a list of remarks
that are added over time as the feedback is processed. This is handy when several people must review the
feedback before action is taken. The extra attributes that you added to the Feedback page are displayed in
the Additional Attributes region. The remaining regions display read-only data that describes the application
context, the runtime environment (browser type and version), and the entire session state. If a bug is
reported, the developer has all the information required to reproduce the bug, which is a valuable benefit.

Responses to Feedback
The feedback mechanism contains a response table. In principle, responses should be sent to the users
who initiated the feedback. However, there is no easy and declarative mechanism that enables you to send
responses to users. If you want to send responses to users, you first need to address a number of design
issues. For example, do you want to broadcast responses to all users or send individual responses to
individual users? Do you want to use email or create reports? Do you want to send responses to a team? Do
you want to route the responses based on a feedback classification scheme?

After you design your response strategy, you can then build a tool that fulfills the requirement by writing
some PL/SQL code and accessing the APEX views that expose all of the Team Development data. The details
of building this tool are beyond the scope of this book, however.

Communication Between Workspaces
Team Development is a property of a workspace. Many professional shops maintain multiple workspaces
for production, testing, and development environments. This means that if an end user enters a feedback
record, that record resides in the production workspace, and the developers can’t see it. This situation is
easily remedied by using APEX’s existing export/import functionality. APEX version 4.0 and above has
added feedback to the list of entities that can be imported and exported to and from a workspace. This
makes it possible to export the production feedback and import it to the testing environment, where the
business analysts can evaluate it. If required, the feedback can be exported from the testing environment
and imported to the development environment, where the developers can evaluate and then log it as a bug,
to-do, or feature.

Chapter 15 ■ team Development

424

Team Development Utilities
Team Development Utilities (see Figure 15-28) are a miscellaneous set of utilities that help you manage the
Team Development environment. The links to the individual utilities are found on the right side of the Team
Development home page. The All Utilities link takes you to a page that provides a menu of all utilities with a
short description of each. Clicking on the individual utility links takes you directly to that utility.

Figure 15-28. Team Development Utilities

Team Development Settings
A small number of defaults that are global to the workspace are configured on the Team Development
Settings page (see Figure 15-29). The Enable Tracking Attributes region is used to turn on/off the feature
regions that track detailed work related to the user interface, testing, documentation, globalization, security,
and accessibility. When you set these attributes to No, the corresponding region on the feature Details page
isn’t displayed.

Chapter 15 ■ team Development

425

Release Summary
The Release Summary page is a management report. It’s organized by release name and can be filtered by
developer and release name. Figure 15-30 shows a small part of this comprehensive report.

Figure 15-29. Team Development Settings page

Chapter 15 ■ team Development

426

Enable Files
The Enable Files link is a shortcut to the Workspace Preferences screen. Here, you can set the value of Enable
File Repository, which specifies whether or not files may be uploaded to Team Development. Selecting Yes
will create a local APEX$ table to store the files. The feature is only available if the Instance Administrator also
enables it at the instance level.

Feature Utilities
The Feature Utilities (see Figure 15-31) perform bulk updates to the Team Development data. You can assign
milestones to unassigned features, set feature due dates, change milestones, and push due dates for open
features. Before you do this, having a clean backup is well advised.

Figure 15-30. Release Summary page

Figure 15-31. Feature Utilities

Chapter 15 ■ team Development

427

Manage Focus Areas
The Manage Focus Areas utility allows you to view the Focus Areas that have been created, the feature count
per Focus Area, the Distinct Owners, and the last edit of a feature in a given Focus Area. By editing, you are
also able to rename a Focus area.

Update Assignees
The Update Assignees utility allows you to reassign various components from one assignee to another. You
can do this for either all releases or a specific one, and you can also choose the components to reassign. See
Figure 15-32.

Figure 15-32. Updating the assignee for various components

View Files
If the feature has been enabled at the workspace level, developers can attach files to a Feature, To-Do, or
Bug. The View Files report will list all of the files that have been uploaded, and some metadata about the
files. You are also able to download the files from this report. If the feature to do so has not been turned on,
the link will read “Enable Files.”

Purge Data
This utility will allow you to purge data for selected component types. This will delete all entries for the
selected types with no opportunity for recovery. This is useful if you’re starting a brand new development
cycle or if you need to clear test data from Team Development.

Chapter 15 ■ team Development

428

Manage News
On both the APEX home page and the Team Development home page is a region that contains news
messages. You can add news items (see Figure 15-33) by clicking the Manage News link or by clicking the
plus-sign icon in the News region.

The News region is handy for broadcasting development news when the team isn’t co-located; the
successful or failed promotion of a release to the test environment is an example. Teams that are co-located
and have a daily status meeting probably won’t use this region.

Manage Links
The Manage Links feature is a simple list of links to documentation, other systems, and web pages that you
can easily define as any valid URL (see Figure 15-34). The links let developers quickly navigate to URLs that
have been approved by the development team. The entire team then shares common documentation, such
as SQL or PL/SQL references that can help the team adhere to common development styles and standards.
This, in turn, helps to encourage consistency, which greatly improves the software-development process.

Figure 15-33. Managing the News section

Figure 15-34. Manage Links feature

Chapter 15 ■ team Development

429

User Roles for Team Development
Access to Team Development is useful for stakeholders both inside and outside the development team. The
team lead and senior developers should have access to Team Development. Access by junior developers
depends on the team’s culture and trust level. Interested stakeholders who are outside the development
team could include the project manager, test team, and business analysts.

Access to the APEX development environment is controlled in the APEX Administration area under the
Manage Users and Groups menu. This area maintains the list of APEX users, dictating what level of access
each user has (see Figure 15-35). An outside stakeholder is set up without administrator and developer
privileges; however, the Team Development Access field is set to Yes. When they log in to the APEX
development environment, they see only the Team Development area and nothing else. There is only one
problem at this time with this scenario: outside stakeholders can’t see the applications in the Application
drop-down lists.

Summary
Team Development is a software-development tool that has been tailored to work in the APEX development
environment. The five main entities (milestones, features, to-dos, bugs, and feedback) work together in
a framework that is simple, extensible, and flexible. Teams that embrace agile software-development
methodologies will find APEX’s Team Development tool to be a comfortable fit with their culture.

Figure 15-35. Account Privileges for a project manager, tester, or business analyst

431

Chapter 16

Dynamic Actions

One of the most exciting features introduced in recent versions of APEX was dynamic actions, which provide
the ability to declaratively define complex client-side behavior such as validations, highlighting, alerts,
setting page values, and so on, without the need to hand code large amounts of JavaScript.

Dynamic actions have been significantly extended since their introduction, providing more flexibility
and functionality declaratively. This helps the developer break away from the traditional server-side
scripting model by executing the dynamic-action logic on the browser instead of incurring a round trip to
the server.

Dynamic actions are event-driven just as manually written JavaScript would be. But APEX uses the
declarative information provided to generate the required JavaScript code, which is then implemented at
runtime. This chapter will examine and implement a number of different dynamic actions so you can get a
feel for what they can achieve.

Dynamic Action Benefits
One of the major advantages of using declarative dynamic actions as opposed to hand-coded JavaScript is
that dynamic actions understand and can take advantage of APEX core objects such as regions and items,
allowing easy reference and manipulation. Another benefit of using declarative logic is that, when you
choose to upgrade to the next release of APEX, the framework around dynamic actions will ensure that any
code generated will be compatible with the new version of APEX.

But beyond the base benefits of the declarative nature of APEX, dynamic actions let you code very
complex client-side actions without having to learn a whole new technology to do so. In fact, it’s likely that
you could code upward of 80% of everything you need to do with nothing more than the Dynamic Action
wizard, SQL, and PL/SQL.

However, because JavaScript is the de facto standard for coding browser interactivity, it’s also likely that
at some point you’ll be forced to learn a bit about JavaScript. Learning JavaScript is beyond the scope of this
book. After all, you bought this book to learn APEX. But if you do want to learn more about JavaScript, Apress
has a number of excellent books on the topic.

Breaking Down Dynamic Actions
In their original incarnation, dynamic actions were split into two categories: standard and advanced. The
only real difference between these two categories was what the related wizard let you achieve. Under the
covers, both dynamic action types were identical, and once you left the wizard, all options were available to
you. The more recent versions of APEX (including 5.0) have done away with this artificial separation. The
definition of a dynamic action can be broken down into the following components:

Chapter 16 ■ DynamiC aCtions

432

Identification: Defines the name of the dynamic action and its execution
sequence

When: Defines when the action will be fired. You can choose the event, the object
or objects that will participate in causing the action to fire, and any condition that
applies to the event.

Actions: Dynamic actions can contain both True and False action sets. The True
action set is executed if the defined event occurs for the selected objects and any
condition applied evaluates to TRUE. The False action set executes if the defined
event occurs for the selected objects and any condition applied evaluates to
FALSE.

Affected elements: Identifies which objects on the page are affected by the
dynamic action

As with other parts of APEX, dynamic actions support conditions, authorizations, and build-option
features.

Dynamic Actions in the Help Desk Application
Dynamic actions are all about making your application’s user interface easier for the user to utilize. In the
following exercises, you will implement increasingly complex dynamic actions to make the interface of your
application more robust.

Starting Simple
In the first exercise you will edit the Contact Us form on page 3 of the Help Desk application. Although there
is nothing wrong with the form as it stands, you’ve been asked to deny input into the Body text area until the
user has entered something into the From email address field.

To create a dynamic action to do this, follow these steps:

1. Edit Page 3 of your application.

2. Right-click the P3_FROM item and choose Create Dynamic Action from the
context menu. Using the menu shown in Figure 16-1 is the most direct way to
create a dynamic action.

Chapter 16 ■ DynamiC aCtions

433

3. As shown in Figure 16-2, enter Disable Email Body for the Name of the dynamic
action. Just as with other components, the more descriptive the name, the easier
it is to identify.

4. Leave Event set to Change and set Condition to is null, as shown in Figure 16-3.

Figure 16-1. Using the right mouse shortcut to create a dynamic action

Figure 16-2. Specifying a name for the dynamic action

Chapter 16 ■ DynamiC aCtions

434

5. In the Rendering Tree on the left under the True node, click the Show action
(highlighted in red), as shown in Figure 16-4.

6. In the Properties Editor, select Disable for Action, set Item(s) to P3_BODY, and
set Fire On Page Load to Yes, as shown in Figure 16-5.

Figure 16-3. Setting a dynamic action’s Event and Condition for execution

Figure 16-4. Selecting the default True action so that it can be edited

Chapter 16 ■ DynamiC aCtions

435

7. In the Rendering tree, right-click the False node for the Dynamic Action and
select Create False Action from the context menu.

8. In the Properties Editor, select Enable for Action, set Selection Type to Item(s),
set Item(s) to P3_BODY, and set Fire On Page Load to Yes, as shown in
Figure 16-6.

Figure 16-5. Setting the True action details

Chapter 16 ■ DynamiC aCtions

436

9. Save and Run the page.

Recapping the steps in the exercise, you created a dynamic action that fires any time the Change event
for the item P3_FROM is triggered. You set the condition so the action fires only when P3_FROM is null. The
action is set to Disable, which disables an item so the user can’t navigate to it, and you chose to run the
dynamic action whenever the page is loaded. This ensures that the affected item is disabled to start with.
You also created the opposite False action. This enables the item whenever the Change event is fired and
P3_FROM is not null. In both the True and False actions, you chose P3_BODY as the affected element. This
indicates that it’s P3_BODY that is enabled and disabled depending on the state of the P3_FROM item.

When running page 3, note that the Body item is disabled until you enter something in the From item
and navigate away. Conversely, if you delete all content from the From item, the Body item again becomes
disabled, but only after you navigate away from P3_FROM. This is acceptable, but it would be nicer if the Body
item became enabled as soon as you typed anything in the From item. Let’s set the triggering event to be Key
Release instead of the default Change event. Here’s what to do:

1. Edit Page 3 of the application.

Dynamic actions that are triggered by a form element can be edited from one of two places. First,
you can see the dynamic action defined in the tree under the triggering element, as shown in Figure 16-7.
However, you can also navigate to the Dynamic Actions tab in the Tree Pane (shown in Figure 16-8) to see all
dynamic actions for the current page.

Figure 16-6. Setting the False action details

Chapter 16 ■ DynamiC aCtions

437

Figure 16-7. Dynamic actions as they appear in the Rendering Tree

Figure 16-8. Viewing the Dynamic Actions tab

2. From either the Rendering Tree or the Dynamic Actions Tab, click the Disable
Email Body dynamic action to edit it.

Chapter 16 ■ DynamiC aCtions

438

3. In the When section of the Properties Editor shown in Figure 16-9, change Event
to Key Release and click Save.

To test this change, run page 3 again. The page opens and looks like Figure 16-10. Start typing an address
into the From item. As soon as any value is entered, the Body item becomes enabled, as in Figure 16-11.
Conversely, the moment you delete all content from the From item, the Body item becomes disabled again.

Figure 16-9. Specifying Key Release as the event

Figure 16-10. Before entering a value in the From field

Chapter 16 ■ DynamiC aCtions

439

Using Page-Level Events
Dynamic actions give you full control over the triggering events and actions performed. Events can be
triggered at various levels, including when the page loads, unloads, is resized, and so on.

In the next exercise you will use the Page Load event to pop up a dialog reminding the user to be as
verbose as possible when they enter their ticket. Follow these steps:

1. Edit Page 2 of the application.

Because this event isn’t tied to an individual item, but instead to a page-level event, you need to create
the dynamic action accordingly.

2. Navigate to the Dynamic Actions tab of the Tree Pane.

3. Right-click the Page Load node in the tree and select Create Dynamic Action
from the context menu, as shown in Figure 16-12.

Figure 16-11. After entering a value in the From field

Figure 16-12. Creating a dynamic action at the page level

Chapter 16 ■ DynamiC aCtions

440

4. In the Properties Editor, enter Alert User for Name.

5. In the Dynamic Actions Tree under the True node, click the Show action
(highlighted in red) to edit its properties.

6. Select Alert for Action and enter "Please be sure to be as complete as
possible when entering the details of your issue." for Text, as shown in
Figure 16-13.

7. Save and Run the page.

Running page 2 now generates a pop-up every time you load the page. Figure 16-14 shows the pop-up
as seen when using the Chrome browser for Mac OS X.

Figure 16-13. Setting Action and Text for the dynamic action

Chapter 16 ■ DynamiC aCtions

441

■ Note Both the alert and Confirmation actions available to you in apeX take advantage of the native dialogs
provided by the browser being used by the end user. you have no control over the look and feel of these dialogs,
and each browser may render them differently. if you need control over the look and feel of dialogs, you likely
need to consider using a built-in apeX modal dialog or coding your own dialogs based on jQuery.

Dynamic Actions with Multiple Triggering Elements
Dynamic actions also give you the opportunity to define multiple triggering elements. Using this method,
you only need to create a single dynamic action to catch the events of several page items.

Your public ticket-entry page contains several page items that shouldn’t be left blank. However, your
APEX validations won’t fire until the user submits the page. In this exercise, you will create a dynamic action
that checks each of these page items as you navigate through the form to see if you left the values null. If a
value is null, the background color of the item will be set to pink using the background style element. If it is
not null, the background of the item will be set back to white. Follow these steps:

1. Edit Page 2 of the application.

2. Navigate to the Dynamic Actions tab of the Tree Pane.

3. Right-click the Events node in the tree and select Create Dynamic Action from
the context menu.

Figure 16-14. Alerting the user

Chapter 16 ■ DynamiC aCtions

442

4. In the Properties editor, enter Highlight Null Values for Name.

5. Set Event to Lose Focus, set the Selection Type to Item(s), and enter the
following for the Items field, as shown in Figure 16-15:

P2_SUBJECT,P2_DESCR,P2_CREATED_BY

Figure 16-15. Creating a dynamic action with multiple triggering elements

6. Set Condition to is null.

7. In the Dynamic Actions Tree under the True node, click the Show action
(highlighted in red) to edit its properties.

8. Set Action to Set Style.

9. In the Settings section, enter background for Style Name and pink for Value.

10. In the Affected Elements section, set Selection Type to Triggering Element.

11. Set Fire On Page Load to No.

Chapter 16 ■ DynamiC aCtions

443

12. In the Dynamic Actions tab of the Tree Pane, right-click on the False node of the
Highlight Null values dynamic action and select Create FALSE action.

13. Set Action to Set Style.

14. In the Settings section, enter background for Style Name and white for Value.

15. In the Affected Elements section, set Selection Type to Triggering Element.

16. Set Fire On Page Load to No.

17. Save and Run the page.

By entering a comma-separated list of page items, you indicate that the Lose Focus event should fire
when the user navigates away from any of these items. When the dynamic action fires, it checks to see if that
item is null and sets it to the appropriate color. The dynamic action knows which item’s background color to
set by referencing the triggering element for the affected element.

Run page 2 of the Help Desk application and tab through each field, leaving them all blank. You should
notice that as you leave a blank field it immediately turns pink. If you go back and enter text into a pink field
and then navigate away, the background is set to white.

■ Note Depending on the browser you’re using, you may see that after the pop-up message is dismissed,
the subject field turns pink. this has to do with the order of precedence some browsers give to Javascript
events. Certain browsers place the cursor in the initial page item prior to raising the PageLoad event. once the
PageLoad event fires, the subject field loses focus, and the LoseFocus event fires. When you have multiple
dynamic actions on a page, which you often will, you need to make sure they don’t adversely affect one another.

Dynamic Actions Using PL/SQL
Dynamic actions are architected to be an extensible framework, giving the developer full control over coding
complex actions that might not be available in a purely declarative environment. In the spirit of UI usability,
you should help the user adhere to the business rules of the application without introducing undue work for
them. In this exercise, you will take the requirement for P2_CREATED_BY to be entered in uppercase and use
SQL and PL/SQL to create a dynamic action that alters the user’s input to uppercase, no matter what they
enter. Here are the steps:

1. Edit Page 2 of the application.

2. Navigate to the Page Rendering tab in the Tree Pane.

3. Right-click the P2_CREATED_BY item and choose Create Dynamic Action from
the context menu.

4. Enter Change Case to Upper for Name.

5. Set Event to Lose Focus, set Condition to is not null.

6. In the Dynamic Actions Tree under the True node, click the Show action
(highlighted in red) to edit its properties.

7. Set Action to Set Value, and in the Settings section, select PL/SQL Expression
for Set Type.

Chapter 16 ■ DynamiC aCtions

444

8. Enter UPPER(:P2_CREATED_BY) for PL/SQL Expression and P2_CREATED_BY in
Page Items to Submit.

9. In the Affected Elements section, set Selection Type to Triggering Element.

10. Set Fire On Page Load to No. See Figure 16-16.

Figure 16-16. Using a PL/SQL expression as the body of a dynamic action

11. Save and Run the page.

Chapter 16 ■ DynamiC aCtions

445

Here you use the PL/SQL UPPER expression to take the user’s input and convert it to uppercase. You
reference the value the user entered by using the bind variable :P2_CREATED_BY. However, because the value
the user entered into the web browser has not been submitted to APEX, that value isn’t currently in session
state. That’s why you need to include it in the list of page items to submit. If you needed to reference several
values of user input, you must enter them all as a comma-separated list.

Now, when page 2 is run, any text entered in the Created By field is made uppercase when the user exits
the field.

■ Note Dynamic actions that use sQL or pL/sQL for their conditions or body actually make a call back to the
database server to run the code in question. Depending on the weight and complexity of the code, this could
potentially introduce performance issues. save the use of sQL and pL/sQL for actions that require interaction
with the database to retrieve data that isn’t available from directly within the page.

Dynamic Actions Using JavaScript
In addition to PL/SQL, you can use JavaScript in dynamic actions. In this exercise, you will use JavaScript
to determine the onscreen status of a ticket that you’re editing on page 210. If the user has set the status to
CLOSED, the dynamic action will automatically set the Closed On date to today’s date:

1. Edit Page 210 of the application.

2. Navigate to the Dynamic Actions tab of the Tree Pane.

3. Create a new dynamic action by right-clicking the Events node in the tree and
selecting Create Dynamic Action from the context menu.

4. Enter AutoFill Closed_On Date for Name.

5. Make sure Event is set to Change, set Selection Type to Item(s), and enter
P210_STATUS_ID for Item(s).

6. Set Condition to JavaScript expression.

7. Locate and open the file ch16_javascript.txt. This file can be found where you
unzipped the files associated with this book.

Examine the JavaScript string that is being used as the body of the condition. This may seem very
cryptic at first, but when it’s broken down, it’s quite straightforward. Let’s look at it in pieces:

this.triggeringElement.options[this.triggeringElement.selectedIndex].text == 'CLOSED'

The keyword this references the JavaScript event that kicked off the chain of events to start with, and
triggeringElement references the item on the page that was at the root of the event. So, in this case,
this.triggeringElement is talking about P210_STATUS_ID.

Here’s where a little developer knowledge has to be introduced. Being the developer, you know that
P210_STATUS_ID is a select list, and that a select list has from one to many values the user can select. In
HTML, these values are called options.

Because of the way you’ve declaratively defined the P210_STATUS_ID select list, only one option can be
selected at a time. You can access the option that is currently selected on the page by using the JavaScript
this.triggeringElement.selectedIndex. The square brackets use that index to reference the selected
option from the P210_STATUS_ID select list.

Chapter 16 ■ DynamiC aCtions

446

Although you could reference the value of the selected option, that would only give you the ID of the
selected status. You’d then have to make a round trip to the database to find out the text status. Instead, you
can use the .text JavaScript method to get the text that the select list is displaying to the end user and see
what they selected.

Once you have that, you can then compare it to the value you’re looking for, which is CLOSED.

1. Copy the contents of the file into Value, as shown in Figure 16-17, and click Next.

Figure 16-17. Using JavaScript for the condition text of a dynamic action

2. In the Dynamic Actions Tree under the True node, click the Show action
(highlighted in red) to edit its properties.

3. Set Action to Set Value, set Set Type to PL/SQL Expression, and enter SYSDATE
for PL/SQL Expression.

4. In the Affected Elements section, set Selection Type to Item(s) and set Item(s)
to P210_CLOSED_ON.

Chapter 16 ■ DynamiC aCtions

447

5. Make sure Fire on Page Load is set to No.

Although you want the CLOSED_ON date to be set when you choose a status of
CLOSED, you want anything that is currently entered in the CLOSED_ON date to
be removed if you choose any status but CLOSED. So, use the False action of the
dynamic action to do this.

6. In the Dynamic Actions tab of the Tree Pane, right-click on the False node of the
AutoFill Closed_On_Date Dynamic Action and select Create FALSE action.

7. Set False Action to Set Value.

8. Set Set Type to PL/SQL Expression, and enter NULL for PL/SQL Expression.

Although P210_STATUS_ID triggers the dynamic action to fire, P210_CLOSED_ON is
the affected element.

9. Set Selection Type to Item(s) and set Item(s) to P210_CLOSED_ON.

10. Make sure Fire on Page Load is set to No.

11. Save and Run your application.

Run your application and edit any ticket using page 210. Change the status to CLOSED and then back
again to any other status. You will see the value for the Closed On date being set and cleared according to the
value you choose for the select list.

Summary
Dynamic actions have many uses and are extremely flexible. However, you must make sure that multiple
dynamic actions on the same page don’t interfere with each other. Also, because dynamic actions run as
JavaScript in the browser, try to do as much as you can declaratively, or with JavaScript, without resorting to
SQL or PL/SQL. This reduces the number of calls to the database server and avoids potential performance
bottlenecks.

It’s probably inevitable that you’ll be required to learn at least a little JavaScript to achieve more-
complex results. JavaScript syntax isn’t hard to learn, and it can be a useful addition to your skillset as a web
application developer.

449

Appendix A

Page Designer Walkthrough and
Reference

One of the challenges to productivity in versions of APEX prior to 5.0 was the need to drill down into the
specific item you wanted to edit before you could change any of its properties. This meant learning where
these items existed in the Tree View, the context menus, and the actual edit screens. It also meant that
editing multiple items on a page could be quite tedious.

APEX 5.0 has completely reengineered the process of building and editing pages. The familiar Tree View
that was introduced as part of APEX 4.0 has been retired and replaced by a new Page Designer. No longer do
you drill down to separate pages to edit individual items—now everything is done on a single page.

While this can mean a huge leap forward in productivity, at first it can be quite daunting, especially to
those of us who have spent significant amounts of time becoming familiar with the methods of APEX 4.0.

This section will walk you through the new Page Designer section by section and introduce the
nomenclature used throughout this book to refer to its sections and functionality. This will also be a good
place to refer back to if you’re trying to remember where to find something, or are wondering what a
particular button or item does.

Page Designer Overview
While the new Page Designer might seem like a radical departure from the way things were done in previous
versions of APEX, it’s actually a tried and tested design. Just think of Visual Studio, Eclipse, NetBeans, and
the myriad other IDEs in the market. They all conform to a very similar design pattern, which was used to
model the new APEX 5.0 Page Designer.

Figure A-1 depicts the Page Designer, shown editing Page 1 of the Sample Database Application.

Appendix A ■ pAge designer WAlkthrough And reference

450

The Page Designer is broken down into five major areas, as indicated by the numbers in Figure A-1:

1. Page Designer Toolbar – Appears at the top of the Page Designer, providing
access to page-level activities

2. Tree Pane – Displays a set of tabs that allow access to Rendering, Dynamic
Actions, Processing, and Shared Components

3. Central Pane – Provides access to layout, messages, page-level search, and
context-sensitive help

4. Property Editor – Allows editing of properties for the selected item(s) on
the page

5. Gallery – Provides access to the different region, item, and button types available
within APEX

One thing that you will probably notice is that, on smaller screens such as laptops, the interface can look
quite cramped. You can adjust the size of the sections by clicking and dragging on the splitters between the
sections, and you can toggle a section’s visibility by clicking on the small triangle icon, indicated in Figure A-1.
However, if you’re like me, you may want to do most of your work on a monitor with a bit more room so you
can stretch out the panes to a more comfortable and readable size.

Now, let’s explore each of the five main sections in more depth.

Figure A-1. The APEX 5.0 Page Designer

Appendix A ■ pAge designer WAlkthrough And reference

451

Page Designer Toolbar
Figure A-2 shows the Page Designer toolbar, which is designed to give you access to a number of page-level
activities.

At the left, you see the APEX breadcrumbs telling you which application you’re currently editing and
that you’re currently on the Page Designer. Working from left to right from there are the controls. Hovering
over each control will present a tooltip with a description and, in some cases, more information about
the control.

Page Finder: Clicking on the pull-down menu opens the Page Finder dialogue,
allowing you to select a page to edit. You may also enter the page number directly
and click the Go button to navigate to that page. If you attempt to navigate away
from the current page, and there are any unsaved changes, APEX will ask if you
would like to discard those changes and continue.

Page Locking: The padlock icon displayed here indicates the locking state for the
current page. If the page is unlocked, the padlock icon appears to be opened; if
locked, the padlock icon will appear closed. Clicking on the icon will toggle the
locking state and assign the current user as the owner of that lock. When locking
a page, you will be asked to provide a lock comment that will display to other
users who access the page.

Undo: This rolls back the last change(s) to an item or set of items. Hovering over
the icon will indicate the change(s) that will be rolled back.

Redo: This reapplies the last change(s) to an item or set of items. Hovering over
the icon will indicate the change(s) that will be reapplied.

Create: This pull-down menu provides access so that you can create one of a
number of APEX objects. The following options are provided as part of the Create
menu:

Page: Initiates the Create a Page wizard

Page as Copy: Initiates the Copy Page wizard

Form Region: Initiates the Create Form wizard

Report Region: Initiates the Create Report Region wizard

Page Component: Opens a help dialogue that outlines the ways page
components can be created in APEX 5.0

Figure A-2. The Page Designer toolbar

Appendix A ■ pAge designer WAlkthrough And reference

452

Shared Component: Initiates the Create Application Component wizard

Page Group: Navigates to the Create Page Group page in APEX

Developer Comment: Opens the Developer Comments dialogue. Here, you
can enter and view comments against the current page or a set of pages.

Team Development: Provides a sub-menu allowing the creation of Features,
Bugs, and To Dos in the team-development tool.

Utilities: This pull-down menu provides access to a number of page-related
utilities. The following options are provided as part of the Utilities menu:

Delete page: Allows you to delete the current page. The dialogue that is
displayed upon selecting this option allows you to confirm the deletion and
to decide whether or not you wish to cascade that delete to any related list
entries, as well as shows you the contents of the page you will be deleting.

Advisor: Opens a new browser window displaying the APEX Advisor and
selects the current page for processing. From here you may perform checks
on either your application or a specific page, including looking for errors,
security issues, QA issues, and other best practices.

Caching: Navigates to the Caching Dashboard for the current page. From
here you can manage the page- and region-caching that is active for the
current page.

Attribute Dictionary: Navigates to the Attribute Dictionary Dashboard
for the current page. From here you can update the current page from
the Attribute Dictionary or use the current page to update the Attribute
Dictionary.

History: Navigates to a report of historical changes that have been made to
the current page and application. The report shows the changes made and
the developer who made the changes.

Export: Initiates the Export Page wizard, allowing for the export of a single
page of the application as a backup prior to making changes, or to transfer
from one instance to another.

Cross-Page Utilities: Navigates to a set of pages that can be used across
multiple pages.

Application Utilities: Navigates to a set of application-level utilities.

Page Groups: Navigates to the Page Groups management and assignment
page.

Upgrade Application: Navigates to the Application Upgrade report and
wizard. Here you can see which elements of an application could potentially
benefit from upgrading functionality to the latest provided by APEX 5.0

Component View: Switches from the Page Designer View to the Component
View, which has been available since early versions of APEX.

Appendix A ■ pAge designer WAlkthrough And reference

453

Team Development: This pull-down menu provides access to the features of
the Team Development module and will only appear if Team Development is
enabled within the workspace. The following options are provided as part of the
Team Development menu:

Features: Navigates to the Team Development module and displays a report
that is filtered to show incomplete Features for the current page.

To Dos: Navigates to the Team Development module and displays a report
filtered to show incomplete To Do items for the current page.

Bugs: Navigates to the Team Development module and displays a report
filtered to show incomplete bugs for the current page.

Feedback: Navigates to the Team Development module and displays a
report filtered to show unhandled feedback for the current page.

Developer Comments: Initiates a dialogue where developer comments, bugs, or
to do items can be created against the current page.

Shared Components: Navigates to the Shared Components page of APEX,
providing access to all application-level shared components.

Save: Saves any outstanding changes on the current page

Save & Run: Saves any outstanding changes on the current page and then runs
the page.

Tree Pane
The Tree Pane on the left-hand side of the Page Designer gives you access to all of the components of the
current page by providing a set of four tabs: Rendering, Dynamic Actions, Processing, and Page Shared
Components. Figure A-3 shows the top region of the Tree Pane and indicates the common features.

Figure A-3. The Page Designer’s Tree Pane

Appendix A ■ pAge designer WAlkthrough And reference

454

Clicking on one of the four tabs across the top will contextually change the tree data displayed in the
body of the pane:

The Rendering tab changes the tree to display the components related to page
rendering, including Regions, Items, Buttons, Logic, and so on.

The Dynamic Actions tab changes the tree to display all dynamic actions defined
on the current page, regardless of how they are triggered.

The Processing tab changes the tree to display all application logic associated
with page processing, including Computations, Validations, Processes, and
Branches.

The Page Shared Components tab changes the tree to display application-level
shared components that are associated with this page.

■ Note there is some overlap between the rendering and the dynamic Actions tabs in that the rendering
tab will display any dynamic Action whose triggering element is a rendered component. don’t let this trick you
into believing that they are separate dynamic Actions. they are the same and are displayed in both places for
convenience.

When either the Rendering or Processing tabs are active, two extra buttons (as shown in Figure A-3) are
displayed that allow you to either Group by Processing Order (the default) or Group by Component Type.

The Dynamic Action and Page Shared Component tabs are grouped by Event and Component type,
respectively, and then ordered by their user-assigned sequence.

The final control, the Action Menu, is a context-sensitive menu that mirrors the context menus you
see when right-clicking the components in the tree. Both menu types provide a multitude of functionality
depending upon which tab is current as well as which node you have selected in the tree.

For instance, if you’re currently on the Rendering tab and have a Region selected in the tree, clicking
either the Action Menu or right-clicking on the region name in the tree will produce a context menu of
available options.

Hovering over any node in the tree, regardless of which tab you’re on, will display a tooltip containing
basic information about the component.

You may also use the tree to reorder components using Drag & Drop. Reordering the items within a
form is as easy as clicking and dragging the items into the order you want them. While dragging an item, a
yellow helper node appears in the tree indicating a legal drop position. Note, however, that this only changes
their order and doesn’t affect any of the items’ layout properties.

Central Pane
The Central Pane is broken down into four separate tabs, as indicated in Figure A-4: Grid Layout, Messages,
Page Search, and Help. Each of these tabs merits its own detailed explanation.

Appendix A ■ pAge designer WAlkthrough And reference

455

Grid Layout
The Grid Layout tab, as shown in Figure A-5, provides a visual representation of the components that will be
displayed on the page. While this is definitely not a full WYSIWYG representation of the final rendering, it does
a very good job of allowing the developer to understand how components will be rendered on the screen.

Figure A-4. Tabs of the Central Pane

Figure A-5. Grid Layout and associated controls

Appendix A ■ pAge designer WAlkthrough And reference

456

As mentioned earlier, you can use the region splitters to resize the amount of space each panel takes
up on the screen, or you can, by clicking the arrow on the splitter, hide a region completely. There are times,
however, that you may want to expand the Grid Layout to take up the entire canvas. Clicking the Expand/
Restore button will initially expand and then reinstate the Grid Layout.

Alternatively, on particularly large or busy pages, you may want to focus on the layout of a specific
region. Clicking on the region in the Grid Layout and then clicking the Display From Here button will hide
all other regions on the page, outside of the selected region, from view. Clicking on the Display From Page
button will restore the Grid Layout to its default view, displaying the entire page’s visible components.

Visible components on the page can be moved around using Drag & Drop. New components can
also be added to the page by dragging and dropping them onto the Grid Layout canvas from the Gallery
(see Figure A-6). When dragging items into position, the areas where the object may be dropped will
have a yellow background. As you hover over a placement area, a grey box will appear within the yellow
background (as shown in Figure A-6) indicating where the object will be dropped.

As with the Tree Pane, the Grid Layout contains an Action Menu and context menus available for all
components. By either selecting the component in the Grid Layout and right-clicking or clicking the Actions
Menu you will be presented with the actions available for that component.

Figure A-6. Using Drag & Drop to place a button

Appendix A ■ pAge designer WAlkthrough And reference

457

There are a set of options in the Grid Layout’s Action Menu and context menus that control what is
shown in the Grid Layout:

Hide Empty Legacy Positions: When this option is selected (which is the
default), empty template positions, which are deemed to be “legacy,” are
hidden from the Grid Layout. Legacy positions are considered to be those that
relate to older themes and, while not deprecated, are discouraged from being
used moving forward. Even if this option is selected, if the position contains a
component, it will be shown in the Grid Layout.

Hide Empty Positions: When this option is selected, any position that does not
contain a component will be hidden from view. This allows the developer to
focus only on those positions that currently contain items.

Hide Global Page Components: When this option is selected (default), the Grid
Layout hides any components that are placed on the current interface’s global
page. This allows the developer to focus only on the components that are defined
on the current page.

Hide Buttons: When this option is selected, all region areas that are considered
button containers and any assigned buttons are hidden from view. This allows
the developer to focus on the placement of items within a region.

Hide Items: When this option is selected, all region areas that are considered
item containers and any assigned items are hidden from view. This allows the
developer to focus on placement of buttons within a region.

Again, similar to the Tree Pane, tooltips are available in the Grid Layout, providing basic information
about the component over which you’re hovering.

■ Note hidden items will not display in the grid layout but will appear in the rendering section of the
tree pane.

Messages
As you develop your page by placing components and editing their attributes, you will inevitably see a
component highlighted in either red or yellow, and the Messages tab will be badged to indicate the number
of messages available, as shown in Figure A-7.

Appendix A ■ pAge designer WAlkthrough And reference

458

Messages come in two types:

Errors: Indicated in red, these messages must be addressed before the page can
be saved. Clicking on the text of the error in the Messages tab will display the
attribute in the Properties Pane associated with the error.

Warnings: Indicated in yellow, these messages are there to warn you of potential
problems. You are still able to save the page without addressing the warning,
but the page may not act properly until the warning is fully addressed. Clicking
on the text of the warning in the messages tab will display the attribute in the
Properties Pane associated with the warning.

Page Search
Figure A-8 shows the Page Search tab, which allows you to search through the metadata of all page
components.

Figure A-7. The Messages tab showing a message and the associated component and attribute

Appendix A ■ pAge designer WAlkthrough And reference

459

Entering any text into the search field and pressing RETURN will search the metadata of your application
for the search term entered and display any references found, highlighting your search term. Clicking on any
of the items found with the search will navigate to that component within the page designer.

Using the Match Case option will require the search to match the case of the entered search term
exactly. Using the Regular Expression option will treat the search term as a regular expression string.

The Clear button will clear the search from the entire Page Search form as well as any results listed
below it.

Help
Every attribute within the Property Editor has associated help available to the developer. To view the help,
select a component in either the Tree Pane or the Grid Layout and then select an attribute. At that point,
switching to the Help tab will display the help for the selected attribute. Figure A-9 shows the help text
available for the Subtype attribute of the P1_SEARCH text field.

Figure A-8. The Page Search tab showing search results

Appendix A ■ pAge designer WAlkthrough And reference

460

This context-sensitive help will assist developers in quickly coming up to speed on the many new
attributes that have been introduced in APEX 5.0

At the bottom of each help section is a Provide Feedback on Help link. Clicking on the link will open a
new browser window and navigate to an APEX application that allows you to provide feedback on the help
text for the attribute currently in context. The feedback will be used by the Oracle APEX development team
to help refine the help text in future releases.

Property Editor
The Property Editor on the right-hand side of the Page Designer displays all of the attributes for the
component(s) currently selected in either the Tree Pane or the Central Pane. Figure A-10 shows the Property
Editor pane and outlines the related controls.

Figure A-9. Viewing help for the P1_SEARCH Subtype attribute

Appendix A ■ pAge designer WAlkthrough And reference

461

As you select components in the Tree Pane or the Grid Layout, the Property Editor will update to show
the attributes for the currently selected component(s). Attributes are organized into Attribute Groups
and can be expanded and collapsed by clicking on the triangle icon beside the group name. The Required
Attribute Indicator takes the form of a red triangle in the upper-left corner near the attributes label.

The amount and type of information that is displayed in the Property Editor can be controlled by the
controls at the top of the pane:

Show Common: In cases where only one component is selected, choosing this
option will show only the attributes whose values differ from those of the default.
If more than one component is selected, this option will also show the attributes
that have been commonly edited across the selected components.

Show All: In cases where only one component is selected, choosing this option
will show all attributes for the selected component. If more than one component
is selected, this option will also show all common attributes for the selected
components.

Collapse All: Collapses all of the Attribute Groups so that only the headings are
shown.

Expand All: Expands all of the Attribute Groups so that all appropriate attributes
(as controlled by Show Common and Show All) are displayed.

Go To Group: Places focus on the first attribute of the group selected from the
pull-down menu.

As you edit the various attributes of APEX components, it is likely that you’ll be familiar and
comfortable with most of the controls you are presented with. In the next sections, we’ll go over a few control
types whose function might not be immediately apparent.

Figure A-10. The Page Designer’s Property Editor pane

Appendix A ■ pAge designer WAlkthrough And reference

462

Quick Picks
The Quick Pick control appears to the left of attribute select lists, as shown in Figure A-11. Clicking on the
Quick Pick icon will produce a short list of what are considered the “most common” options of the full
select list.

Go To
The Go To control appears when an attribute references another component on the page. By clicking the
icon shown in Figure A-12, the Page Designer’s focus is set to the component indicated by the attribute.
This provides a quick way to navigate directly to the referenced component.

Figure A-11. The Quick Pick icon being clicked for a select list

Figure A-12. The Go To icon associated with the Region attribute for a text field

Appendix A ■ pAge designer WAlkthrough And reference

463

Options Dialogue Button
There are a number of attributes that require a more complex pop-up dialogue to set their values. In these
cases, APEX provides an Options Dialogue Button, as shown for both the Template Options and the Target
Page in Figure A-13. Clicking on the grey box containing the text produces a dialogue that provides options
for the attribute in question. Figure A-14 is an example of the Template Options Dialogue for a button.

Figure A-13. Template Options and Target attributes with Options Dialogue Buttons

Appendix A ■ pAge designer WAlkthrough And reference

464

Code Editor
For attributes requiring SQL, PL/SQL, or large amounts of static text, APEX provides a Code Editor control.
As shown in Figure A-15, the control shows the code in a relatively small text area but provides a button to
expand the text area into the full Code Editor, as shown in Figure A-16.

Figure A-14. Example dialogue for a button’s Template Options

Figure A-15. The SQL Query attribute of a report with the Code Editor button in the upper right

Appendix A ■ pAge designer WAlkthrough And reference

465

The Code Editor contains a toolbar across the top of the dialogue. Figure A-17 shows the toolbar and
indicates the function of each of its icons.

Figure A-16. Example Code Editor dialogue

Figure A-17. The Code Editor toolbar with icon explanations

Appendix A ■ pAge designer WAlkthrough And reference

466

Most of the icons are fairly self-explanatory, but for completeness their functionality is listed below:

Undo: Rolls back the last set of changes to the text in the Code Editor dialogue.

Redo: Reapplies the last change that was rolled back using the Undo button.

Find: Displays a region below the toolbar allowing the developer to search the
contents of the Code Editor dialogue. Search options include Match Case and
Regular Expression.

Replace: Displays a region below the toolbar allowing the developer to sear the
contents of the Code Editor and replace occurrences of the found search string
with another string. Search options include Match Case and Regular Expression.
Replace options include Replace, Replace All, and Skip.

Query Builder: Opens a new window with the Drag & Drop Query builder (See
Chapter 4). It only displays for Code Editor dialogues expecting a SQL query.

Auto Complete: Provides context-sensitive Auto Complete functionality while
editing the text in the Code Editor. When editing SQL or PL/SQL, Auto Complete
provides autocomplete for database objects in the current “parse as” schema as
well as Oracle-defined functions and reserved words. When editing HTML text,
Auto Complete provides assistance with HTML tags.

Validate: When editing SQL or PL/SQL, Validate will parse the code provided
for syntax errors. If a syntax error is encountered, the error is indicated by an
error message inline with the code prior to the line with the error. If no errors are
found, a “Validation Successful” message is displayed at the top of the dialogue.

Settings: Provides a set of dialogue-specific settings that will be remembered
across user sessions for each specific user:

Use Plain Text Editor: Switches from the syntax-highlighting editor to a
plain text editor.

Tab Inserts Spaces: When selected and the Tab key is pressed, the editor will
place a fixed number of spaces instead of a tab character. When deselected, a
tab character will be used.

Tab Size: Number of spaced to be used to replace a tab character when the
previous option is enabled.

Indent Size: Sets the auto-indent size for languages (such as JavaScript) that
support auto indenting.

Themes: Applies one of a number of different visual themes to the Code
Editor. The new theme will not be visible until the setting is OK’ed and the
Code Editor selected again.

Show Line Numbers: When selected, a gutter with line numbers will be
added to the left-hand side of the code.

Show Ruler: When selected, a dotted line appears at the eighty-character
mark within the Code Editor.

http://dx.doi.org/10.1007/978-1-4842-0466-5_4

Appendix A ■ pAge designer WAlkthrough And reference

467

Gallery
The Gallery Pane displays directly below the Central Pane and provides a palette of components and
controls that can be used to build the page in the Grid Layout. The pane has three types of components
selectable via the buttons at the top left, as shown in Figure A-18.

By default, only controls and components that are supported in the current user interface are displayed.
Clicking on the Action Menu in the upper right, you can opt to show unsupported components that are to
be used “at your own risk.” Some of these components are considered experimental and may not work in all
browsers.

Each component can be placed into the Grid Layout by simply dragging and dropping the component
into the appropriate area. When dragging items into position, a yellow background will indicate the areas
where the object may be dropped. As you hover over a placement area, a grey box will appear within the
yellow background (refer to Figure A-6) indicating where the object will be dropped.

You may also right-click on a component and use the context menu to place an item. The Add To
context menu option allows you to select where to place the item using a layered menu representation of the
page structure.

Keyboard Shortcuts
Another benefit of the new Page Designer is the introduction of a set of keyboard shortcuts to perform
common tasks. Table A-1 shows the keyboard shortcuts for both PC/Linux and Macintosh systems.

Figure A-18. The Gallery Pane showing some of the available region types

Appendix A ■ pAge designer WAlkthrough And reference

468

■ Note some platforms (especially Mac) may already have keyboard mappings in place that might interfere
with the function of the key combinations outlined in this table. if any of the functionality doesn’t work as
expected, check to see if there are any conflicting shortcuts already in place at the operating system level.

Summary
While there is a lot to learn about the new Page Designer, after spending some time getting familiar with
its layout and functionality I believe that developing APEX applications will become a much more efficient
endeavor. I urge you to spend some time familiarizing yourself with the contents of this appendix before
you delve deeply into the development chapters of this book. Remember, you can always come back and
reference this appendix if you ever get lost.

Table A-1. A List of Keyboard Shortcuts Available in the Page Designer

Function PC/Linux Macintosh

Save Ctrl+Alt+S Ctrl+Option+S

Save and Run Page Ctrl+Alt+R Ctrl+Option+R

Undo Ctrl+Z Ctrl+Z

Redo Ctrl+Y Ctrl+Y

Go to Rendering Alt+1 Option+1

Go to Dynamic Actions Alt+2 Option+2

Go to Processing Alt+3 Option+3

Go to Page Shared Components Alt+4 Option+4

Go to Grid Layout Alt+5 Option+5

Go to Property Editor Alt+6 Option+6

Go to Gallery Regions Alt+7 Option+7

Go to Gallery Items Alt+8 Option+8

Go to Gallery Buttons Alt+9 Option+9

Display From Here Ctrl+Alt+D Ctrl+Option+D

Display From Page Ctrl+Alt+T Ctrl+Option+T

Restore/Expand Alt+F11 Option+F11

Toggle Hide Empty Positions Ctrl+Alt+E Ctrl+Option+E

Go to Help Alt+F1 Option+F1

Go to Messages Ctrl+F1 Ctrl+F1

Page Search Ctrl+Alt+F Ctrl+Option+F

Keyboard Shortcuts Alt+Shift+F1 Option+Shift+F1

469

��������� A, B
APEX 2.2 (2006), 3
APEX 3.0 (2007), 3
APEX 3.1 (2008), 3
APEX 3.2 (2009), 3
APEX 4.0 (2010), 3
APEX 4.1 (2011), 3
APEX 4.2 (2012), 3
APEX 5.0

access, 5
declarative tool, 1
future, 3–4
history, 2–3
modules (see Modules, APEX 5.0)
Page Designer, 449
PL/SQL program units, 1
RAD development tools and platforms, 1
SQL developer, 5–6
web browser, 5
workspace

applications hierarchy, 9–10
developers, 8
end users, 8
instance administrators, 8
logical makeup, 7
one to many schemas, 8
one to many users, 8
SaaS, 7
schemas, applications

and workspaces, 10–11
workspace administrators, 8
zero to many applications, 8

APEX application export
build status override, 297
debugging, 298
developer comments, 298
export application page, 297
export option, 296
export supporting object definition, 298
export translations, 298
file format, 297

owner override, 297
translations, 298
UNDO_RETENTION, 298

APEX Calendar
creation

breadcrumb entry, 215
drag and drop options, 218
Page wizard, 214
report, 218
Supplemental Information attribute, 219
table name specification, 217
table owner specification, 217
tabs specification, 216
ticket activity alteration, 221
ticket activity calendar, 215
View/Edit Link attributes, 220

Page Rendering region, 222
types, 214

APEX chart
creation

navigation attributes, 225
Page Number, Page Name,

Region Name attributes, 224
Ticket Statuses chart, 226

filtering data
default setting, 228
name and label setting, 227
select list item, 227

Flash and HTML5 versions, 223
queries, 223
Rendering tab, 229

APEX Help
Help Text region, 161
Seeding Help Text, 162–163

APEX items
APP_ALIAS, 143
APP_ID, 143
APP_PAGE_ID, 143
APP_SESSION, 143
APP_USER, 143
bind variables, 142
page vs. application items, 142

Index

■ index

470

APEX URL syntax, 143
Application bundling and deployment

components identification
APEX application export

(see APEX application export)
APEX-based files, 294
external files, 288
groups, 287
interactive report subscription, 298
objects of database (see Database objects)
private interactive report, 298
public interactive report, 298

importing, 304
supporting objects

build option, 301
definiton, 299
deinstall, 303
export, 303
home page, 299
install, 301
messages page, 303–304
prerequisites, 300
script wizard, 302
substitutions, 301
tabbed definition screen, 300
upgrade, 303
validations, 301

Application express accounts, 269, 316
Application-level attributes

authentication method, 77
globalization options, 78–79
tab options, 78

Application wizard, 67
APEX home page, 67, 450
breadcrumb entries, 98–99
breadcrumb regions

application builder, 93
context menu, 95
copy operation, 96
destination page, 95
migration, 98
page-rendering hierarchy, 94
redundant regions, 96–97

create button, 68
global page, 91–93
lists

application page, 102
desktop navigation, 99
dynamic lists, 99
maintenance screen, 100
parent list entry, 100
process, 99
second list entry, 101–102
static lists, 99
target definition, 100–101
values, 100

LOVs
dynamic list, 104–106
static list, 103–104
types, 102–103

navigation bar
application builder, 89
conditions, 90–91
icons, 88
login and logout buttons, 91
settings, 90
shared components screen, 89–90

public pages, 87–88
sample and package applications

Administration page, 72
dashboard, 72
Gallery, 70
home page, 69
types, 68

scratch
application attributes

(see Application-level attributes)
creation process, 73
layout pages, 75–76
login prompt, 81–82
multiple pages, 76
name selection, 73–74
process completion, 81–82
resulting pages, 81
shared components, 77
theme selection, 74–75

spreadsheet application, 73
Static Content region

attributes, 83
Content Body area, 84
Home page, 84
icon view, 83
Page Designer, 85
report view, 83
title and text, 86

websheet application, 72
Authentication, 269–270
Authorization schemes, 276

��������� C
Cascading Style

Sheets (CSS), 287
Central Pane

Grid Layout tab, 455
Messages tab, 457
P1_SEARCH text field, 459
Page Search tab, 458

Content navigation, 311
page links, 311–312
second navigation, 312

Custom authentication, 342

■ Index

471

��������� D
Database accounts, 270
Database objects, 288

definition scripts, 289
existing applications, 293–294
Generate DDL Wizard, 290–291
naming script, 292
Oracle Enterprise Manager, 294
Schema compares, 294
SQL Developer

Database Export tool, 293
TOAD, 294

Data sections
chart sections, 337
data grids, 327

column-and-row format, 327
column options, 329–330
data-entry context, 328
edit data, 329
form page, 329
menu options, 330–331
row options, 329–330
section types, 335

reports-creation, 333–334
reports-data access, 334

data section, 336
data source, 335–336
navigation, 334
new section wizard, 336
report data page, 335
section link, 335
text section, 335

reports-setup, 332–333
Declarative BLOBs

column attributes, 166
features, 163
report query, 165
settings, 164

Development tools
advisor, 373–374
APEX schema, 365
application groups, 362

assign button, 363
process, 362
report, 364
steps, 363

build options
apply, 378–379
configuration, 377
creation, 376
development, 376
Login Attempts report, 375
login page, 376
prompt status, 377–378
report, 379

dictionary, 368
finder, object types, 369
monitoring

activity logs, 372–373
enabling logging, 371–372
login attempts, 373

Oracle SQL developer-APEX
integration, 380
refactoring code, 381–382

page groups, 364
page locks

administration, 361–362
APEX conflicts, 360
Locked Page, 360–361
multiple files, 359
unlock, 361

page-specific utilities, 379–380
search application

regular expression, 370–371
results, 369–370

views
columns, 366
filter, 367
home page, 365
reference PRODUCT_ID, 366
tree, 367

Dynamic action
benefits, 431
definition, 431
features, 431
Help Desk application

creation, 433
Dynamic Actions tab, 437
event and condition, 434
False action, 436
From field, 439
JavaScript, 445
Key Release, 438
multiple triggering elements, 441
name specification, 433
page-level events, 439
PL/SQL, 443
Rendering Tree, 437
True action, 434–435

Dynamic SQL, 253

��������� E
Entity-relationship diagram (ERD), 45

��������� F, G
Forms (Apex)

creation, 108
item layout, 152
lists of values implementation, 156

■ index

472

master–detail report, 159
procedure

arguments, 124
branching process, 124
breadcrumb selection, 123
creation, 123
modification, 125
Processing tab, 126
Rendering tab, 126
Shared Components tab, 126

repositioning components, 154
Table wizard

branching process, 114
buttons specification, 113
columns selection, 112
Display Details view, 120
label templates, 115
navigation options, 111
page, region, mode,

breadcrumb specification, 110
primary key population option, 112
Processing tab, 122
Rendering tab, 121
schema selection, 109
Shared Components tab, 122
TICKETS table, 114
validation, 117

tabular forms (see Tabular forms)
types, 108

��������� H
“Hello World” apps, 37
HTML DB 1.5, 3
HTML DB 1.6 (2004), 3
HTML DB 2.0 (2005), 3

��������� I, J, K
Identify problems

system design
business logic vs. user interface logic, 41
database objects, 40, 42
primary keys, 41
table definition and user interface defaults, 40

system requirements
broken system, 38
clean slate, 37
define requirements, 38
extrapolate database design, 39
help-desk systems, 37
TICKET attributes, 39
TICKET-DETAIL attributes, 40
USER attributes, 39

theory to practice translation, 42–43

Integrated development
environment (IDE), 3

Interactive report
Actions menu, 187
adding breaks, 191
Aggregate action, 194
Application Builder view, 213
chart action

interface, 195
pie chart, 194
types, 195

column computation, 193
column-heading menu, 185
Control Summary region, 186
creation

navigation options, 179
page number, name,

breadcrumbs specification, 178
SQL SELECT statement, 180

Download action
attributes, 203
CSV format, 203
download options, 202
formats, 202
HTML format, 203

features, 177
Filter action, 188
Flashback action, 198
grouping, 196
Help action, 200
Highlight action, 192
modification

Actions menu options, 209
alternate report, 208
column-level actions, 210
column selection, 205
Control Break action, 207
default setting, 206, 208
Link Column attributes, 212
primary report, 206
Reports select list, 208
Select Column list, 210–211
Select Columns

option, 188, 204
Pivot action, 197
Reset action, 200
restricting function

column-by-column basis, 184
end-user functionality, 182
Finder drop-down menu, 186

Save Report action, 198
Search Bar, 181
sorting, 191
Subscription action, 201
tickets analysis, 181

Interactive report (IR), 17

Forms (Apex) (cont.)

■ Index

473

��������� L
Lightweight Directory Access

Protocol (LDAP), 316
Lists of values (LOVs), 99

dynamic list, 104–106
static list, 103–104
types, 102–103

��������� M, N
Master–detail report and form

breadcrumb entry, 130
Code Editor, 135
column attributes, 132
column formatting options, 134
creation, 127
date format mask, 133
detail table, 128
Manage Tickets, 136
navigation options, 129, 131
page attributes, 130
report attributes, 132
report export options, 133
Ticket Details, 137
Tickets report, 136

Milestones
definition, 409
features, 411
Owner tab, 410
Report tab, 409

Modules, APEX 5.0
administration and

team development, 12, 35
application builder, 12

home page, 16–18
Page Designer, 18–19

hierarchical menu structure, 12–13
Home page, 13–16
packaged apps, 12

dashboard page, 34–35
gallery, 33
home page, 32

SQL workshop, 12
commands interface, 21, 23
home page, 19–20
object browser, 20–21
Query Builder

(see Query Builder)
scripts interface, 23–26
utilities, 30–31

��������� O
Oracle Web Application (OWA) Toolkit, 251

��������� P
Packaged App Gallery, 33
Page Designer

APEX 5.0, 449–450
Central Pane

Grid Layout tab, 455
Messages tab, 457
P1_SEARCH text field, 459
Page Search tab, 458

Gallery pane, 467
keyboard shortcuts, 467–468
Property Editor

Code Editor, 464
Go To control, 462
Options Dialogue Button, 463
Quick Pick, 462

toolbar, 451
tree pane, 453

Page-navigation section, 311, 326
Page sections

chart identification, 353–354
games and practices, 351
goals chart, 354
home page creation, 350
important news, 351
navigation section, 357
result page, 355
schedule page, 355–356
Week section, 352
Welcome section, 350

Programmatic elements
computations

creation, 243–244, 246
executions, 242
types, 243

conditions, 231
dynamic SQL, 253–257
PL/SQL regions, 251–252
processes, 246

data-manipulation processes, 246
execution points, 247
in Help Desk application, 248, 250–251
types and uses, 247–248

required values, 231, 233
validations

evalute TRUE/FALSE, 234
item-level, 234–237
page-level, 238–239
tabular forms, 240

Property Editor
Code Editor, 464
Go To control, 462
Options Dialogue Button, 463
Quick Pick, 462

■ index

474

��������� Q
Query Builder

Column Name, 29
Column Selection, 28–29
Conditions tab, 29
Data Type Indicator, 29
DEMO_ORDERS table, 28
initial Query Builder screen, 27
remove, 28
Results tab, 29
Saved SQL, 29
Show/Hide Columns, 28
SQL tab, 29
SQL statement, 30
Table Actions, 28
two-table join, 29

��������� R
Rapid application development (RAD), 1, 401

��������� S
Searchable APEX Report

creation, 145
Master Detail page, 150
Reset Pagination process, 147
Tickets report region, 149

Section-navigation section, 312, 327
Security

access control, 273
assign page, 273, 275, 620
breadcrumb, 275
implementation, 273
object summary, 274
public read only, 276
user names and privileges, 275

authentication, 269–270
authorization schemes

access-control mechanisms, 276
error message, 277
Manage Multiple Tickets page, 279
page level, 277
security setting, 278

conditional security, 272
custom authentication scheme, 270–271
data security

manage Multiple Tickets page, 282
new secure objects, 281
TICKET_ACTIVITY_V and TICKET_V, 281
update source, 283

read-only attributes, 279–281
session-state protection, 284

user maintenance data entry
breadcrumbs, 268
Manage Users form, 266
new database objects, 263–264
owner and table names setting, 265
P610_PASSWORD element, 269
page tab set, 267
Report page setup, 264
USER_NAME and

PASSWORD selection, 267
user maintenance navigation

Desktop Navigation menu, 260
empty page creation, 260
List Entry button, 261
new Admin menu entry, 262
subtab, 261
web interface, 259

Session State
APEX session communication, 138
APEX session identifier, 139
database session communication, 138
retrieving, 139
setting, 139
viewing, 140

Single sign-on (SSO), 316
SQL Script Editor, 24
SQL tags, 357–358
SQL workshop

data workshop utility
data load and unload methods, 52–53, 56
data text box, 55
mapping data columns, 55
object browser, 56
spreadsheet data, 52–53
table name, 54
XML data transport format, 52

lookup table
definitions and data, 57
SQL syntax link, 59–60
STATUS column, 59
table wizard, 57–58

Object Browser
add foreign key, 51
constraints definition step, 48
create table wizard, 49
navigation, 46
table and columns, 46
table primary key, 47
TICKET_DETAILS table, 50
TICKETS and TICKET_DETAILS tables, 45
trigger, 50

SQL scripts tool
background and run now, 61
detail view, 63

■ Index

475

report footer, 63
schema objects, 61
SQL*PLUS-syntax, 60
summary view, 62–63
view results icon, 62
zip file, 60

user interface defaults
attribute dictionary, 64
points, 64
properties, 64
table definition, 65–66
table dictionary, 64

Statement of Direction (SoD), 4
Structural navigation, 313

��������� T
Tabular forms

creation
breadcrumb entry, 170
column selection, 168
confirmation region, 171
page and region attributes, 170
updatable column selection, 169

modification
button action attributes, 173
button attributes, 172
column attributes, 174
dragging button, 172
LOV attributes, 175
Processing tab, 176
Rendering tab, 176
Shared Components tab, 176

Team development
APEX home page, 404
bugs, 402, 415
Calendar tabs, 406
design elements, 406
Enable Files link, 426
entity relationship diagram, 402
features, 402
features

documentation region, 413
Edit page, 412
History tab, 413
interactive report, 411
Progress Log tab, 414
Utilities, 426

feedback, 403
configuration, 416
polishing, 419
response table, 423
view page, 423
workspace, 423

graphic data, 408
home page, 405
Manage Focus

Areas utility, 427
Manage Links feature, 428
milestones (see Milestones)
News region, 428
purge data utility, 427
RAD, 401
Release Summary page, 426
roles, 429
settings page, 425
tags, 408
To-dos, 402

definition, 414
Development page, 414
handy navigation, 414

Update Assignees utility, 427
utilities, 424
View Files report, 427
WBS, 401

Text sections
data queries and links, 324
edit page, 323
elements, 325
history link, 325
toolbar, 324

Tool for Oracle application
development (TOAD), 294

��������� U
URL tampering, 284
User interface defaults

attribute dictionary, 64
points, 64
properties, 64
table

column names, 66
database schema, 65
dictionary, 64
synchronization wizard, 65
table-level and

column-level attributes, 66
table list, 65
utilities page, 64
view/edit, 65

��������� V
Validations, 234

item-level, 234–237
page-level, 238–239
tabular forms, 240–242

■ index

476

��������� W, X, Y, Z
WebDB systems, 2
Websheet

access control, 358
administration, 338
annotations, 337
chart sections, 310
content addition

alternate default reports, 349–350
constraints, 347–348
data grids creation, 345
initial application, 345
page (see Page sections)
player data, 348–349
SQL tags, 357–358

creation and configuration
access control list, 344
APEX Builder, 340
application, 340–342
authorization scheme, 342, 344
custom authentication, 342–343
Grizzlies Soccer, 341
object adding, 343–344
properties modification, 342
success page, 341

help link
application content tab, 314
embedded markup syntax, 314–315
markup syntax, 314
static information, 313

HTML DB, 309
markup syntax

LINK_TARGET and LINK_NAME, 316
LINK-TYPEs and descriptions, 315–316

navigation
content, 311–312
contexts, 311
section, 310
structural navigation, 313

PL/SQL sections, 311
Project Marvel, 309
sections

data (see Data sections)
navigation, 326
text (see Text sections)

setup, 339–340
structure, 310
user authentication

application express account, 316–317
builder, 317–318
custom, 316
LDAP, 316
SSO, 316

user authorization
access control list, 321
administrator, 319–320
application properties page, 322
configuration, 321
contributor, 319
entry details page, 321
login link, 322
navigation-access control list, 320
reader, 318
roles, 318

Work breakdown
structure (WBS), 401

Workspace management
administration home page, 383
APEX version, 385
application build status, 391
application cache section, 390
application express page, 384
click count log, 389
developer activity logs, 389
File Utilization page, 391
interactive reports settings

Saved Reports, 392
Subscriptions page, 393

messages, 387
Meta Data, 388
Monitor Activity

and Dashboard, 399
preferences page, 386, 390
Service page, 385
session state, 389
Users and Groups page

multiple groups, 396
multiple users, 394
single user, 393
user group creation, 398

Websheet Database Objects, 390

www.ioug.org/join

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: An Introduction to APEX 5.0
	 What Is APEX?
	 A Brief History of APEX
	 Ancient History
	 More Recent History
	 APEX 5.0 and the Future

	 What You Need to Get Started
	 Access to an APEX Instance
	 Web Browser
	 SQL Developer

	 Summary

	Chapter 2: A Developer’s Overview
	 The Anatomy of a Workspace
	 APEX Users
	 Applications, Pages, Regions, and Items
	 Workspaces, Applications, and Schemas
	 A Final Word on Workspaces

	 A Tour of the APEX Modules
	 The Home Page
	 Application Builder
	The Application Builder Home Page
	The Application Home Page
	The Page Designer

	 SQL Workshop
	The Object Browser
	The SQL Commands Interface
	SQL Scripts Interface
	The Query Builder
	Utilities

	 Packaged Apps
	Packaged App Gallery
	Packaged App Dashboard
	Packaged App Administration

	 Administration and Team Development

	 Summary

	Chapter 3: Identifying the Problem and Designing the Solution
	 Identifying System Requirements
	 Never a Clean Slate
	 A Broken System
	 How Do You Fix Things?
	Defining the Requirements
	Extrapolating to a Database Design

	 System Design with APEX in Mind
	 Table Definition and User-Interface Defaults
	 APEX and Primary Keys
	 Business Logic vs. User-Interface Logic
	 Placement of Database Objects

	 Translating Theory to Practice
	 Summary

	Chapter 4: SQL Workshop
	 Creating Objects with the Object Browser
	 Loading Data with the Data Workshop Utility
	 Creating a Lookup Table
	 Loading and Running SQL Scripts
	 User Interface Defaults
	 Understanding User Interface Defaults
	 Defining UI Defaults for Tables

	 Summary

	Chapter 5: Applications and Navigation
	 The Create Application Wizard
	 Sample and Packaged Applications
	Packaged App Gallery
	Packaged App Dashboard
	Packaged App Administration

	 Websheet Applications
	 Database Applications from Spreadsheets
	 Applications from Scratch
	Naming the Application
	Laying Out Pages
	Copying Shared Components
	 Application Attributes
	Selecting an Authentication Method
	Selecting Tab Options
	Globalization Options

	Completing the Create Application Wizard

	 Static Content Regions
	 Public Pages
	 Navigation Bar Entries
	 Global Pages
	 Breadcrumb Regions
	 Breadcrumb Entries
	 Lists
	 Lists of Values
	 Static List of Values
	 Dynamic List of Values

	 Summary

	Chapter 6: Forms and Reports: The Basics
	 APEX Forms
	 Form on a Table
	 Creating a Form on a Table
	 Modifying a Form on a Table
	Changing the Label Templates
	 Making the Fields Mandatory

	 Looking Behind the Scenes

	 Form on a Procedure
	 Creating a Form on a Procedure
	 Modifying a Form on a Procedure
	 Looking Behind the Scenes

	 Master–Detail Report and Form
	 Creating a Master–Detail Report and Form
	 Modifying a Master-Detail Report

	 Session State
	 Understanding Session State
	 Sharing Database Connections
	 Setting and Retrieving Session State
	 Viewing Session State

	 APEX Items
	 Page vs. Application Items
	 The Importance of Bind Variables
	 Built-In Items

	 APEX URL Syntax
	 Searchable APEX Reports
	 Creating a Searchable APEX Report
	 Adding Reset Pagination
	 Looking Behind the Scenes—APEX Report
	 Looking Behind the Scenes—APEX Master–Detail Forms

	 More on APEX Forms
	 Item Layout
	 Placing Multiple Items in the Same Row
	 Implementing LOVs
	 Master–Detail Cleanup

	 APEX Help
	 Adding a Help Text Region
	 Seeding Help Text

	 Declarative BLOBs
	 Summary

	Chapter 7: Forms and Reports: Advanced
	 Tabular Forms
	 Creating a Tabular Form
	 Modifying a Tabular Form
	 Looking Behind the Scenes

	 Interactive Reports
	 Creating an Interactive Report
	 Running an Interactive Report
	 Restricting Functionality by Report
	 Restricting Functionality by Column
	 Using the Column Heading Menu
	 Searching by Column
	 Selecting Columns
	 Filtering
	 Sorting
	 Adding Breaks
	 Highlighting
	 Computing Columns
	 Adding Aggregates
	 Adding Charts to Interactive Reports
	 Grouping
	 Pivot
	 Using Flashback
	 Saving an Interactive Report
	 Resetting an Interactive Report
	 Getting Help
	 Adding a Subscription
	 Downloading
	 Modifying an Interactive Report
	Adding Attributes and Removing Columns
	Selectively Enabling and Disabling Items
	Limiting an Action to Specific Columns

	 Looking Behind the Scenes

	 Calendars
	 Understanding Calendar Types
	 Creating a Calendar
	 Looking Behind the Scenes

	 Charts
	 Writing Queries for Charts
	 Creating a Chart
	 Filtering Data for a Chart
	 Looking Behind the Scenes

	 Summary

	Chapter 8: Programmatic Elements
	 Conditions
	 Required Values
	 Validations
	 Item-Level Validation
	 Page-Level Validation
	 Tabular Form Validation

	 Computations
	 Execution
	 Types
	 Creating a Computation

	 Processes
	 Execution Points
	 Process Types
	 Processes in the Help Desk Application

	 PL/SQL Regions
	 Dynamic SQL
	 Summary

	Chapter 9: Security
	 User-Maintenance Navigation
	 User-Maintenance Data Entry
	 Authentication
	 Custom Authentication Schemes
	 Conditional Security
	 Access Control
	 Authorization
	 Read-Only Items
	 Data Security
	 Session-State Protection
	 Summary

	Chapter 10: Application Bundling and Deployment
	 Identifying Application Components
	 External Files
	 Database Objects
	New Applications
	 Existing Applications

	 APEX-Based Files
	 APEX Application Exports

	 Supporting Objects
	 Prerequisites
	 Substitutions
	 Build Options
	 Validations
	 Install
	 Upgrade
	 Deinstall
	 Export
	 Messages

	 Importing
	 Summary

	Chapter 11: Understanding Websheets
	 Websheet Structure
	 Navigation
	 Content Navigation
	 Structural Navigation

	 Help
	 Markup Syntax
	 User Authentication
	 User Authorization
	 Sections
	 Text Sections
	 Navigation Sections
	 Data Sections
	Data Grids
	Reports: Setup
	Reports: Creation
	Reports: Accessing the Data

	 Chart Sections

	 Annotations
	 Administration
	 Summary

	Chapter 12: A Websheet Example
	 Setup
	 Creating and Configuring a Websheet Application
	 Adding Content to a Websheet
	 Creating Data Grids
	 Applying Constraints
	 Adding Players
	 Creating Alternate Default Reports
	 Creating Page Sections
	 SQL Tags

	 Access Controls
	 Summary

	Chapter 13: Extended Developer Tools
	 Page Locks
	 APEX Conflicts
	 Locking an APEX Page
	 Unlocking a Page
	 Administering Page Locks

	 Application and Page Groups
	 Application Groups
	 Page Groups

	 APEX Views and the APEX Dictionary
	 The APEX Schema
	 APEX Views
	 APEX Dictionary

	 Searching in APEX
	 APEX Finder
	 Search Application

	 Monitoring Your APEX Application
	 Enabling Logging
	 Using the Activity Logs
	 Login Attempts

	 APEX Advisor
	 Build Options
	 Understanding the Need
	 Creating a Build Option
	 Configuring Build Options
	 Prompting for Build Option Status
	 Applying Build Options
	 Reporting on Build Option Utilization

	 Page-Specific Utilities
	 APEX and Oracle SQL Developer
	 Integration
	 Refactoring Support

	 Summary

	Chapter 14: Managing Workspaces
	 Learning About Your Environment
	 Viewing Instance Information
	 Checking the APEX Version

	 Managing the Service
	 Workspace Preferences
	 Messages

	 Managing Meta Data
	 Developer Activity and Click Count Logs
	Developer Activity Logs
	Click Count Logs

	 Session State
	Manage Session State
	Manage Preferences

	 Application Cache
	 Websheet Database Objects
	 Application Build Status
	 File Utilization
	 Interactive Report Settings
	Saved Reports
	Subscriptions

	 Managing Users and Groups
	 Creating One User
	 Creating Multiple Users
	 Organizing Users into Groups
	Creating a Group
	Assigning Users to a Group

	 Viewing Usage Reports and Dashboards
	 Summary

	Chapter 15: Team Development
	 Team Development Overview
	 Team Development Interface
	 APEX Home Page
	 Team Development Home Page
	 Common Design Elements
	 Drilldown Functionality
	 Tagging

	 Milestones
	 Milestones Report Tab
	 By Owner Tab
	 Features by Milestone Tab

	 Features
	 Features Report Tab
	 History Tab
	 Progress Log Tab

	 To-Do Items
	 Bugs
	 Feedback
	 Configuring Feedback
	 Polishing the Feedback Page
	 Viewing Feedback
	 Responses to Feedback
	 Communication Between Workspaces

	 Team Development Utilities
	 Team Development Settings
	 Release Summary
	 Enable Files
	 Feature Utilities
	 Manage Focus Areas
	 Update Assignees
	 View Files
	 Purge Data
	 Manage News
	 Manage Links

	 User Roles for Team Development
	 Summary

	Chapter 16: Dynamic Actions
	 Dynamic Action Benefits
	 Breaking Down Dynamic Actions
	 Dynamic Actions in the Help Desk Application
	 Starting Simple
	 Using Page-Level Events
	 Dynamic Actions with Multiple Triggering Elements
	 Dynamic Actions Using PL/SQL
	 Dynamic Actions Using JavaScript

	 Summary

	Appendix A: Page Designer Walkthrough and Reference
	 Page Designer Overview
	 Page Designer Toolbar
	 Tree Pane
	 Central Pane
	 Grid Layout
	 Messages
	 Page Search
	 Help

	 Property Editor
	Quick Picks
	Go To
	 Options Dialogue Button
	 Code Editor

	 Gallery
	 Keyboard Shortcuts
	 Summary

	Index

